	
	[image: image1.png]

	[image: image2.png]

	Overview
A client is organizational and legal entity in the SAP system. All the business management data is protected here because other clients can not access them. The main objective of the client is to keep the data isolated. The data in a client can be only visible within that client; it can not be displayed or changed from another client. In a physical SAP system there can be multiple clients. Each of these clients can have different objective or each client represents a unique work environment. In a development environment one client can be used as sandbox client (developers learn how to configuration using SAP environment), one can be used as prototype client (users do the customizing according to the company’s requirements and testing) and another one can be used as the master development and configuration client (where the final configuration is done). A client has its own set of tables and user data. To know whether a table is client dependant or independent you can search for a field MANDT. The client dependant tables always include the client field ‘MANDT’ as a part of the primary key. There can be multiple clients in each of the system of SAP system landscape as we have already seen in chapter 5. It is better to understand the customizing process in the CTS pipeline before designing a good client strategy for the SAP systems. Customizing is a method in the SAP R/3 system that helps the user to configure the functionality from SAP, according to the customer requirements. When the SAP objects are just used by only one client, we define them as client dependant data. There are some objects as ABAP/4 programs, which are used by all the clients in a SAP system. Those objects are called client independent data. The functional changes resulting from customizing can be client specific (client dependant) or general (client independent). You must know the fact that client independent customizing can create problems if the authorizations and the client strategy are not defined properly. For example if you have three clients in a development environment then the role of each client should be defined properly. One of these three clients should be used for client independent customizing and in other clients, users will not have the authority to do any client independent configuration.

About SAP Clients
With a standard installation, SAP delivers 000, 001 and 066 clients. Client 000 is considered to be a SAP reference client and it should not be changed or deleted at anytime from the system. After a SAP system is installed, you can create other clients from 000 by using the client copy procedure. For some important configuration you have to logon to client 000. For example, if you want to configure your CTS system then this client must be used. Client 000 also plays a very important role in upgrade process. Every time you do upgrade client dependant changes will be automatically upgraded in this client and later on the changes can be copied to other clients.
The customer uses client 001 as a SAP sample client. After a new installation both 000 and 001 clients are identical, but after an upgrade 000 will have additional customizing data. Lot of customer sites does not use 001 client at all. Client 066 is there for SAP Early Watch service. This client enables SAP to remotely access the customer system. SAP provides this service to the customer to improve the system performance. After Early Watch group goes through the checking methodology, a system performance summery and recommendations to improve performance report are provided to the customer. SAP recommends to go for an Early Watch session before your project goes live and another one sometime after the go live date. Client 066 should not be changed or deleted from the system. In case this client was deleted from the system, then you have to follow the instructions in OSS note 7312 to download the client data from sapserv3 and import this data to create 066 client.
Creating a client and setting up the client attributes
To create a client you have to maintain T000 table. From 3.0 onward, transaction SCC4 can be used to maintain T000 table. Also you can chose Administration-> Client admin -> Client Maintenance from the initial screen to do the same. In client table T000, SAP system displays all the clients available, their names, currency used and when the client was changed last as shown in Figure 9.1. If the system is in display mode then you must change it to the change mode by selecting the display/change icon to create a new client. When you click display/change button, a warning is displayed as “Warning: the table is client-independent”. The “New entries” icon should be clicked to create a new client as shown in Figure 9.2.
Figure 9.1 shows Client overview in SCC4 transaction
In the new client creation screen to define a new client you must fill all the required entries. The client number and the name are entered first. Then in the second line the location of the SAP system is defined.
Logical system is defined next. SAP uses logical system concept in ALE (Application Link Enabling), workflow and EDI areas. The logical system must be unique through out the company and any other ALE system group can not use it. You must be careful changing the logical system entry. SAP treats a logical system as a client. You can use transaction BD54 to create a logical system and then enter that entry in the logical system box while creating a client.
Next entry “standard currency” can be defined according to the country. For example USD can be used as a standard currency for USA. To enter a category of a client you must know the objective of that client beforehand. For example if this client will be used as a customizing client then customizing entry should be used from the options. In the next category “Changes and transports for client-dependent objects”, there are four options. If you want to use this client as a sandbox client; and you do not want to record or create a change request every time a change happens to the client then “Changes W/O automatic recording” is the right option. If all the changes to the client should be recorded in a change request then “Automatic recording of changes” is the right option. You must choose this option for your master configuration client. If “No changes allowed” is chosen, then no changes will be allowed to this client. You must chose his option for clients in the production environment to protect your system. “No transport” option is used when you do not want any user to create a transport from this client.
Figure 9.2 shows the client create screen
The “Client-independent object changes” category determines if the client independent data maintenance is allowed in this new client. You get following four options in this category:
· Changes to Repository and client-ind. customizing allowed
· No changes to client-independent customizing objects

· No changes to Repository objects

· No changes to Repository and client-independent custom. obj.

To choose the right option from “Client-independent object changes” category, you must know the definition of Clint independent customizing objects and repository objects. The examples of SAP repository objects are data dictionary objects, module pools and screens. Client independent objects apply to all the clients. The factory calendar is an example of client independent object of customizing. For sandbox client, where user learns how to do the customizing, you must not allow the client independent customizing.

Changes to Repository and client-ind. customizing allowed: Both client independent customizing objects and SAP repository objects can be maintained. Usually this option is selected in a master-customizing client.
No changes to client-independent customizing objects: No change is allowed for client independent customizing objects but changes to repository objects are allowed. This option can be used for a sand box client.
No changes to Repository objects: If you select this option, then no changes are allowed to the Repository objects but the client independent customizing is allowed. When you want to protect the repository objects in a client, this is the right option to use.
No changes to Repository and client-independent custom. Obj: This option does not allow any changes to client independent customizing objects and repository objects. You should use this option for a consolidation and production client where the security of client independent objects and repository objects are necessary.
In the restriction category of the ‘Change View “Clients”: Details’ screen, there are four options. You are allowed to maintain only the following three options as shown in Figure 9.2:
· Protection against overwrite by copying: If you chose this option, a client copy can not overwrite the new client. You should chose this option for a master-customizing client or for an important client as production.

· Start of CATT processes allowed: This option determines whether you want to allow the CATT (Computer Aided Test Tool) process in the client or not. Computer Aided Test Tool (CATT) is tool provided by SAP to test different functionality of the SAP system. To run the CATT tool you can execute transaction SCAT. CATT process changes the database extensively and requires lot of system resources. So we recommend not to chose this option if you are in the production environment.

· Protection against SAP upgrade: If you chose this option, then this client will be not updated in time of upgrade. You should use this option for a client that is used for backup purposes or client 066 (Early Watch client) that is used by SAP for customer’s SAP system performance. If you chose this option for any client, the upgrade will not provide any data to this client and it can not be used as a regular customizing client. You need S_CTS_ALL authorization to maintain this option.

System-level control in transaction SE06
You can use the system change option to control the system level access to different types of users in a SAP project. To use system change option screen you can chose SE06 and then system change option or use SE03 and then go to “for setting the system” category and chose “set system change options”. The option you chose here directly affects ABAP/4 workbench, Workbench Organizer and the transport system.
You need all access to Workbench Organizer to change the system change options as shown in Figure 9.3.
There are some TP commands that can be used to control the system level access. ·
System change option in se06 figure9.3
The following are the four system change options:
· Objects cannot be changed: If you select this option then no changes of any kind are allowed for any objects in the SAP system. The SAP customers use this option in the consolidation and production environment. Using this option you can control the developers and the customizing people directly changing any development objects and customizing objects in the consolidation and production environment. So the users use the transport method to move the objects from development system to other systems instead of directly creating or maintaining them in the target systems. The tp command “tp lock_eu <sapsid>” can be used in the operating system level to set the system to "cannot be changed" and the command “tp unlock_eu<sapsid>” puts the system back to where it was when the lock command was executed.
· Only original objects (w. Workbench Organizer): If you go for this option then only original objects those are created in this system can be changed. If the original object exists in some other system and you have a copy of that object in this system then you can not change that object. In special cases you can use this option for the QA or test system. All the changes are recorded in Workbench Organizer.
· All customer objects (w. Workbench Organizer): This option allows you to edit or repair an object though it is not the original object of the current system. Any changes to customer objects are allowed. The changes are controlled and recorded by the Workbench Organizer. This option does not allow changing the objects came from SAP originally. You can use this option in a training system.

· All objects (w. Workbench Organizer): With this option you can change or repair any objects in the system. Now the system is totally open for any changes to all the objects. With this option also every change is recorded and controlled by the Workbench Organizer. This option is generally selected in a development or sandbox environment.

From 4.0 version the se06 change option looks as following:
Pre-Configured Client from SAP
The pre-configured client from SAP has pre-configured customizing objects for a simple organizational structure. The pre-configured settings of the client help a customer to configure a system quickly. SAP recommends the customers to install the pre-configured client in their system if they want to go for a rapid implementation using ASAP (Accelerated SAP) methodology. In the ASAP chapter we are going to give you an extensive definition about this methodology. Now instead of starting from client 001 copy, you can start from a pre-configured client that will provide more configured features.
SAP provides the transports and help documentation to create a pre-configured client. The pre-configured client for FI/CO, SD, AM, MM, HR and PP modules is already available from SAP. According to SAP, customers that have used the pre-configured client saved 4 to 6 weeks of project implementation time. The way pre-configured client is designed; some of the small companies can run the pre-configured client for production after the out of the box installation.
Following procedure is used to create a pre-configured client:
· A client is created in T000 table
· Copying client 000 to the new client
· Copying the data files and cofiles from SAP to your system
· Adding those change requests to the buffer and then importing them to the target client
· We recommend to check your number ranges after the import
· Creating a user and assigning SAP_ALL and SAP_NEW profiles
· Run the SCAT transaction for CATT tool to test the pre-configured client. This tool is a great tool for those users, who want to learn about SAP functionality and, what a pre-configured client can do for them?
·The pre-configured client comes with non-matric units of mass, area, length and volume and a sample factory calendar is pre-configured with the ten US government holidays.

Client COPY Procedures
After the SAP system is installed, the client copy is a common thing to do for creating new clients. A client copy can be done from one system to another or within one system. A client copy can affect the database and current users in the system; so you need to be aware of the following important information before scheduling a client copy.
For the stability of the system, always schedule the client copy in the nighttime when the users are not working in the system.
To avoid data inconsistency you should not keep on working in the source or target clients when the client copy is going on.
For the best performance, always schedule the client copy in the background. Try to examine the maximum online runtime parameter “max_wp_run_time” in the instance profile. You might need to increase this for a large table copy.
You should have proper authorizations to run the client copy. As a basis system administrator you should have SAP_ALL profile to complete a client copy successfully. If you do not want a generic id to run the client copy; we recommend using SAP*. The internal user SAP* has all the authorizations needed by the client copy.
Always check the database resources before executing a client copy. You can do that by running a "test run" client copy. The test run will provide all the information about the necessary database table spaces that you need in the target client.
The main memory plays a significant role in the client copy. Make sure that you have enough memory to finish the client copy without any problem. When you are planning the hardware requirement for the SAP installation, it is always better to install memory recommended by SAP. Version 3.X and 4.X require more memory for memory management and client copy.
When you trying to copy a large productive client, it better to copy the cluster tables first.
You should look for all the OSS notes that apply to the client copy in a particular version of SAP. For example according to OSS note number 34547, SAP_USR client copy parameter that suppose to copy only user data in the background also copies customizing data in the background for release 3.0B.
If the client copy is locked by another client copy run, then check the log before deleting the lock entry in SM12 to remove the lock.
In 2.2 release of SAP R3trans is used for client copy, client export and client import. You should not do the same in 3.0 or 4.0 release of SAP. You can use R3trans to remove a client in 3.0 and 4.0 also and we will see the procedure in the “deleting a client” part of this chapter. R3trans can be used also for some other important jobs as described in chapter 10.
It is very important to know that the number ranges have to be reset in the target client if you are just copying the customizing data. Though the client copy utility has been improved a lot still we get problems with number ranges. We recommend checking the OSS notes about number ranges before dealing with them.
When you perform a client copy, it is very important to know the three levels of data in SAP system and how they affect the client copy. The client dependent application data is created from the master and transaction data of the system during the application system operation. The client dependant customizing data is created during the development process of a SAP project and this data depend upon the client dependent application data. The client independent customizing data applies to the entire client. The client copy procedure copies the client dependent application data and client dependent customizing data unless you specify to copy the client independent customizing. To maintain the consistency you should follow some SAP rules. When you are copying the customizing data, you should copy the application data (master and transaction data). If you just want to copy the customizing data then remember that all the application tables are reset in the process and this reset process can guarantee the consistency of the client
Creating custom PROFILES to copy Clients
Client copy profiles are used to copy specific data from one client to another. SAP provides some custom profiles to perform a client copy. The following are the example of profiles provided by SAP.
SAP_ALL: All data of a client
SAP_APPL: Customizing, master and transaction data
SAP_CUST: Customizing data
SAP_UAPP: Customizing, master&transact.data, user masters
SAP_UCUS: Customizing data, user masters
SAP_USR: Authorizations and user masters
The objective of above client copy profiles is defined clearly. What profile you are going to use; depends on what you want to copy from one client to another. For example you want to copy the entire data of a client then you want to choose SAP_ALL as your copy profile. you can select a profile name from the profile input field possible entries and then chose Profile -> Display profile from the menu. You can create a custom profile according to your requirement. To create a custom profile you need to chose the path Profile-> Create profile from client copy or client export screen.
Profile: Here you define the profile name. The name should be according to the SAP standard; so it should start with either Z or Y.
Last changed by and last changed on: These fields show the information about the person who last changed the profile and the time it was changed.
In the data selection category we have the following three selections:
User masters: If you chose this option then the user master records will be copied from the source client to the target client.
Customizing data: If you want to copy all customizing data then chose this option.
Appl. Data. Initialization. Cust. Data: This option copies master, transaction and customizing data from the source client to the target client.
Important tips: It is very important for you to understand the data selection procedure before the client copy. In SAP environment it is not possible to copy selected parts of the application and customizing alone. If you want to copy application data, we recommend doing it in batch input. With batch input consistency is ensured.
In the copy mode category the following options are displayed:
Initialize Recreate: This option is grayed out and already selected. This option allows the system to delete all the tables (not selected in the client copy process) in the target client and initialize them. You can use the path Extras -> No initialization to have an option for not choosing this option. We recommend not doing that; it might create instability in the target client.
Copy variants: If you want to include variants in the client copy then chose this option.
In “transport between 2 systems” category there is one option:
Client Independent data: If you chose this option then the client independent data will be copied from one client to another. We recommend executing the client copy remote compare program “RSCLICMP”, before choosing this option to do a client copy. This program provides all the information regarding the differences between the source and target systems client independent tables.
The other options are:
· Default source client: You define the default source client for the client copy in the profile. You can change the client after choosing this profile before starting the client copy.
· Default source client user master record: You can enter the client number from where the user master records will be copied to the target client. You can also change this like default source client.
Comment: You should provide a meaningful description for the profile here.
Client COPY within a system
SCC0 or RSCLICOP (SCCL as of 3.1 release)
 In 3.0 SAP uses RSCLICOP program in transaction SCC0 to copy the customizing environment from one client to another. This will copy client–dependent tables, match codes, number ranges and resolve the logical dependencies between tables and programs. RSCLIC01 or RSCLIC02 were used to copy clients in 2.0 release. These programs use to create command files and the basis administrator was running R3trans utility to transport the data files. Those programs are not supported in 3.0 anymore. For the mass data transfer and large number of table copy, we recommend you to run the RSCLICOP program in the background.
 Tips: Trace information about each client copy run is stored in table CCCFLOW. Use program RSCCPROT to display information about the client copy. You can run RDDANATB program in the background to get the information about the size of all the tables in all the clients. If you start the RSCLICOP in restart mode then try to check the checkentries in table CCCFLOW.
The copy procedure using SCCL
If you are planning to copy the source client to a new client then you must create a new client in SCC4 or table T000 before starting the client copy.
Logon to the target client and chose transaction SCCL or use the path Tools ->Administration->Choose Administration ->Client admin->Client copy ->Local copy and you will see a initial client copy screen as shown in Figure 9.6.
The current client is your target client so it is already selected for you in the first line. In the second line select the appropriate profile you want to use for the client copy. You choose the source client in the third line. In fourth line you can define the client from which you want to copy the user master records. The “Source Client User Master” does not have to be same as source client. Then if you want to run the local client copy to get the information about the storage requirements or a complete table statistics then select the “test run” flag. We recommend you to run the client copy using the “test run” mode first. In test run phase, database updates are not performed.
You should schedule the client copy in the background after all the parameters are selected as shown in figure Figure 9.6. You can run a client copy online if you are just copying the user master records; because when you copy only user master records very limited data is copied form a client and it does not take that long to copy those data.
Figure 9.6 local copy transaction sccl
If the client copy fails for some reason then you can restart the client copy in the restart mode after the fixing the problems. In this case the client copy will start exactly from the same point where it failed. A pre-analysis phase requires sometime determining the restart point. SAP recommends to set the restart flag in the “Execute in background” screen when you plan to copy a large client.
Tips: We recommend to reset the buffers by entering "/SYNC" in the OK code on all the application servers after executing the RSCLACOP or SCC0 for the client copy. RSCLICOP compares the contents of each table in the source client with that in the target client.
Client COPY from one system to another
Client copy from one system to another:
SCC1, SCC2, SCC7, SCC8, RSCLIEXP, RSCLIIMP
The client export/import and remote client copy procedures are commonly used to copy a client from one system to another. The client can be exported from the system using transaction SCC8 and then importing the client using SCC7 or using the transaction SCC2 for both export and import process, the second procedure is to do a remote client copy from one system to another. If you are copying a production size client we recommend performing the client copy using the first procedure.
The following are the steps in the whole procedure:
· First the data from the client in the source system is exported from the database to a transport file on hard disk. Before you transport a client from the source client database, you need to know exactly what you want to transport and you use SAP delivered profiles accordingly.
· Then the SAP delivered TP command is used for the import to the target system client database.
· The post processing procedure is run in the target client to successfully complete the client import.
You have to be very careful when copying the client independent data, because client-dependent customizing objects are dependent on entries in client-independent tables. SAP recommends that you should not copy the client independent tables if they are not yet modified in the target system. If the customizing is being done in a system regularly then you have to be very careful taking the client independent customizing to that system; otherwise you might overwrite the whole client independent customizing settings and the system will become inconsistent. We recommend to consult the customizing team of a project before copying the client independent customizing tables.

Transporting a Client
Procedure: To transport clients from one system to another, go to System Administration then choose Tools -> Administration -> Client admin->Client transport -> Client export or transaction SCC8. In the client transport screen you can select a copy profile that matches your requirements and the target system in your CTS pipeline as shown in figure 9.7. Then you can execute the client export in the background or online. Before the client export starts, a popup screen shows all the information about the command files that will be created after the client export is done. After the process starts. You can watch the export process in client copy log using transaction SCC3.
Figure 9.7 showing transaction SCC8
After the client export procedure is completed, if you chose the client independent data then three transports are created in /usr/sap/trans/cofiles or there will be two transports:
<sid>KO<no> for the client-independent data (if selected). For example if the client export is done from development client 100 then the file will look like DEVKO0001.
<sid>KT<no> for the client-specific data. For example DEVKT0001
<sid>KX<no> for the SAPscript objects as Texts and forms. For example DEVKX0001
The data export is performed automatically. The output of the export includes the name of the COMMFILE that has to be imported. The following data files will be created in /usr/sap/trans/data directory using the same example given above:
For client dependent data: /usr/sap/trans/data/RT00001.DEV
 /usr/sap/trans/data/DX00001.DEV
For client independent customizing data: /usr/sap/trans/data/RO00001.DEV
For SAPscript data of a client: /usr/sap/trans/data/SX00011.DEV
Tips: Make sure that all the cofiles and the datafiles exist in the data and cofile directories before starting the import phase.
Then add all the command files to the buffer by using the TP command in /usr/sap/trans/bin directory as following:
tp addtobuffer <cofile name> <target sid name>
Using the above example cofile: tp addtobuffer devkt00001 qas (if qas is our target system)
 tp addtobuffer devko00001 qas
 tp addtobuffer devkx00001 qas
 Then logon as <sid>adm to the target system and then use then import the transports as following:
tp import devkt00001 qas client100 u148 – For the client dependent data
tp import devko00001 qas client100 u148 – For client independent data
(In the above example QAS is the target system and 100 is the target client)
After you import a client from another system, you must perform post-processing, activities in order to adapt the runtime environment to the current state of the data. To execute post-processing, choose Tools -> Administration- >Client admin ->Client transport->client import or transaction SCC7. Transaction SCC7 will take you to the client import post-processing screen . In that screen the transport from the last tp import is proposed. Please check the transport number and if every thing is according to the order then press enter and that will take care of the post processing activities. You can also use SCC2 to execute the same process as in transaction SCC7. During this process, the SAPscript texts are imported and application reports are generated. If there are inconsistencies, you need to repeat the import after checking the log.
If you get any problem importing the SAPscript objects then use the RSTXR3TR program in the target client to import those. In this screen you can enter the transport request for the SAPscript object. According to the above example devkx00001. In the second line you need to enter the path for the SAPscript data file as following:
/usr/sap/trans/data/<data file for the SAPscript objects>
/usr/sap/trans/SX00001.DEV (using the above example)
You can choose the import option from the “mode” option. Then you can continue to execute the program and it will successfully complete the import of SAPscript objects to the target client.
Up to release 3.0, RSCLIEXP program can be used to create the command files. The tp command is used to do the import as we have seen before and the RSCLIIMP program is executed for the post-processing activities and the consistency of data.

Using the transport procedure in 4.0 In 4.0 after the client is exported from the source system using transaction SCC8 as we have seen in the client export section, the following transport files are created.
<sid>KO<no>: For the client-independent data (if the copy profile selected includes client independent data:
<sid>KR<no>: For the client-specific data.
<sid>KX<no>: For the Texts and forms.
When all the above transports get released from the source system, the data is exported to the data files of /usr/sap/trans/data directory automatically. The cofiles are also created in the /usr/sap/trans/cofiles directory.
 Then the command files need to be added to the buffer for the import using the format from the cofiles as following:
· Logon to the target system as <sid>adm
· cd /usr/sap/trans/bin - Change to the transport directory
· tp addtobuffer <command file-name> <target-sys-id> - Adds to the buffer
If you are transporting to a new client then the new client should be created in the target system. Then you can start the import into the target system as shown in the following UNIX example:
 tp import <target-sys-id> client<target-client> from /usr/sap/trans/bin directory
After the “tp import” process completes successfully, start transaction SCC2 and then execute the import into the target client. This process imports all the SAPscript objects and generates all the programs. After the client is imported successfully, you should perform the post-processing activities by using the following path:
 Tools ->Administration->Client admin->Client transport->Post-process import.
After the post processing is done, we recommend doing table compare between the source client and the target client to check all the client dependent and independent tables for consistency.
Remote CLIENT Copy
SCC9 transaction
Overview of a remote client copy:
Remote client copy is done using the RFC connection between two systems. You might get errors if you do not have all the proper authorization you need including user administration authorization.
Tips: A remote copy requires as much memory as needed by the largest table in the system.
Upto 4.0, remote copy can not handle large volume of data. Remote client copy reads the entire table from the source system and then copies that to the target system using RFC connection. For big tables as BSEG, it takes more time then the RFC wait time; so it might not copy the big table at all. For the same RFC wait time constraint, large quantity of texts can not be copied and remote client copy might terminate without any error. You are not going to see this problem in 4.0 release, because the tables are copied in blocks by RFC. You should check the memory parameters for memory and MAX_wprun_time for run time before starting the remote client copy. Try to add the big tables to the exception list by executing RSCCEXPT report. In 4.0 an inconsistency check is performed automatically during the remote client copy; if any inconsistency is there then the system returns an error.
We recommend avoiding big client copies using remote client copy procedure until release 4.0. In the beginning of a development project upto 3.1I release you can use remote client copy for the smaller clients; when the client gets real big it is better to run client export/ import procedure instead.
Remote client copy procedure:
Before you perform a client copy, the RFC destination for the source system needs to be defined using transaction SM59. In transaction SM59 screen chose “R/3 connections” under “RFC destinations”. Now you click on the create button to create a RFC connection as shown in Figure 9.9.
 Figure 9.9 picture of creating a RFC destination
After the RFC connection for the source system is created, you are ready to perform a remote client copy.
You can chose SCC9 or the menu path Tools ->Administration->Client admin->Client copy ->Remote copy.
First line shows the target client, which is the current client as shown in Figure 9.10. Now you select a copy profile according your requirements. We have already seen how to create a profile and what is their objective. In the fourth line enter the source client (from where you are copying). If click the enter button the fifth line “Source Client User Master” will be filled with the same number as source client. You can change it if you want to. Enter the source system name or RFC destination name that you created in SM59. You can execute the remote client copy in the test mode by selecting the test run flag. After you are done with all the selection you can click on the “Execute in backgrd.” button to start the remote client copy procedure as a background job.
Figure 9.10 to show the remote client copy screen
Deleting a CLIENT
You need to perform two steps to delete a client. First you need to delete the complete client from database and then delete it from client maintenance table T000.
To delete a client from a SAP system:
First log on to the client to be deleted with the proper authorization to delete a client.
Then choose path Tools ->Administration->Client admin->Special functions->Delete client or transaction SCC5 and you are going to see a delete client screen as shown in figure 9.11. In this screen you are going to find two entries; test run and also delete from T000.
If you want to run a client delete process to find out information about all the tables that will be deleted then test run is the right option to use. If you do not want to copy another client to this client and get rid of this client forever then “delete from T000” is the right option to use. You can delete the client in SCC5 by executing it online or in the background. You can choose either one of these options and in the verification popup screen you can check all the parameters for client deletion. After the client deletion process starts you can use SCC3 log entries to check the client deletion process.
Figure 9.11 to show the client delete screen of SCC5
In all the SAP releases so far you can use R3trans to delete a client. We have seen significant timesaving in this way of deleting a client. If you use the R3trans command in the operating system level to delete a client then the first step is to create the command file in /usr/sap/trans/bin (it does not have to be /use/sap/trans/bin as long as you provide the right path in the OS level) with the following contents:
Clientremove
Client = 100
Select *
For the above example the command file name = del100 and the client we want to delete = 100 are used
Then in /usr/sap/trans/bin directory run the following command to delete the client:
R3trans –w <log file for the deletion> -u 1 <path name and the command file>
For our example here you run: R3trans -w del100.log –u 1 del100
You can VI to the del100.log to anytime to the progress in the deletion process.
Tips: For the database performance, we recommend to do database reorganization after you delete a production size client from the system.

 To check the contents of the log:
Choose Tools ->Administration ->Choose Administration ->Client admin->Copy logs then Select a client by double clicking on it and select a copy process by double-clicking on it. The transaction for the log selection is SCC3 transaction. You also can run the program RSCCPROT to get the same result.
You can select one of the client copy entry from “Client copy log analysis ” second screen, following three buttons are provided as shown in figure 9.13.
Log
Monitor
Refresh
System log
Resource Analysis
Figure 9.13 for the client copy log screen
If you select a “Log” button from the “Client copy log analysis” third screen, then not only you get the general information about the client copy but also the following information for each of the table copied in the process.
Table name
Delivery class
Development class
Number of entries in the source client
Number of inserts necessary in the current client
Number of updates
Number of deletes
Additional space required by the copied table in bytes
The following is an example of what you will see in a log display screen.
Table

Dev.cl

Class

nbr-all

-ins

-upd

-del

bytes

sec

ANKA

AA

C

35

0

35

COPY

13

1

ANKP

AA

C

0

0

0

COPY

0

0

ANKT

AA

C

43

0

43

COPY

8

1

ANKV

AA

C

0

0

0

COPY

0

0

T009Y

AA

C

2

0

2

COPY

0

0

T082A

AA

C

16

0

16

COPY

0

0

T082H

AA

C

27

0

27

COPY

1

0

The above example shows the class “C”. The class represents the delivery class. Through the delivery class you can know the kind of data the table has or what environment the table belongs to. For example, all the tables shown in the above display belongs to the customizing environment or they have customizing data. The following are the examples of the delivery classes and their definitions.
Delivery Class

Description

A

Application table includes the master and transaction data
C

Customizing table
L

Table for storing temporary data
G

Customizing table. It is protected against SAP Update
E

Control table
S

System table. They are only maintained by SAP
W

System table. Contents transportable via separate TR objects
The table information, all the additional storage required in Kbytes, the run time for the client copy and the end of processing time are also shown as following example in the client copy log analysis.
· Selected tables: 5,672
· Copied tables: 5,671

· Tables deleted: 0

· Storage required (Kbytes): 260,444

· Program ran successfully

· Runtime (seconds): 10,123

· End of processing: 13:37:24

You can click on the “Monitor “ button and watch the progress of the client copy real time.
The “Refresh” button always refreshes the screen to show you the up to date information.
The “System log” button takes you to the system log screen to show you all the system messages.
The next button “Resource analysis” is a very important utility to show you all the data base resources you need to run the client copy in the table space level. In the resource analysis utility you can get realistic picture of deletes and inserts calculation for the database. Memory requirements can also be found out by this utility.
Tips: You should always check SM21 (the system log) for all the client copy problems.
Ten Golden rules for CLIENT Copies
1. Master data can not be copied without copying transactional data and transactional data can not be copied without copying master data.
2. Application data (transactional and master) should not be copied without copying configuration data.
3. Client copy requires a valid client as the destination client. Make sure that the client exists in T000 table and you can logon to that client.
4. The transport system and the transport management system of 4.0 are the only proper tool to be use to keep multiple systems in sync by transporting development and customizing changes to another instance.
5. When you copy a client from one system to another, client-independent tables should only be copied if they are not yet modified in the target system.
6. We recommend the users to read all the OSS notes regarding client copy that applies to their SAP release. It is always better to schedule the client copy job in the background for the night run when normal work is not taking place.
7. Always check the database space before performing a client copy.
8. To avoid data inconsistencies all the users working in the source and target clients should logoff from the system.
9. RSCLICHK program should be run in the target system remotely before doing a client export. This program will give information about the missing definitions from the data dictionary in the target. After executing this program and getting successful results you can ensure that the client copy will have no problems. In case some tables are different; you can use SE11 to compare and adjust the table structure in both the system before the client copy. A remote test client copy also can be executed to know the differences between source client and target client.
10. If you are not in release 2.2 then do not use R3trans to copy a client.

Simple method for copying VARIANTS
The VARI, VARID and VARIT tables contain all the variants in the SAP system. Those variants can be copied in the client copy time using an appropriate client copy profile. If you just want to copy the variants then R3trans can be used to copy those very quickly.
To copy the variants from one client to another in a system using R3trans, follow the following procedure:
First create a control file with the following contains:
clientcopy
source client = <source client number>
target client = < target client number>
select * from VARI
select * from VARIT
select * from VARID
The second step is to logon as <sid>adm and use the controls file with R3trans as shown in the client export and import section of this chapter. This procedure will copy all the variants from the source client to the target client as defined in the control file.
To copy all the variants between clients between two different systems:
First create a control file for R3trans with the following contents to create a data file:
export
client = <source client>
file = ‘<the path for the data file and the file name>’
select * from VARI
select * from VARIT
select * from VARID
The second step is to logon as <sid>adm in the source system and use R3trans as shown before to execute the control file. The process will create a data file as defined in the control file. The third step is to define a import control file for R3trans with the following contents:
Import
client = <target client>
file = ‘<the path for the data file and the file name>’
After the control file is created, logon as <sid>admin the target system and execute R3trans command with the control file to import all the variants to the target system.

 Important client management tips
We recommend deleting the large cluster tables first from a client using R3trans client remove command before going for the deletion of entire client. To increase the client copy performance it is also better to copy the cluster tables first using the R3trans command. Then use the RSCCEXPT report to exclude all the cluster tables before doing the client copy. To get a list of cluster tables use transaction SE85, then chose other objects -> select pooled/cluster tables. The following control files are for both the above examples:
To copy the cluster tables:
clientcopy
source client = xxx
target client = YYY
select * from BSEG
select * from ……..
To delete the cluster table before deleting the whole client:
client remove
client = XXX
select * from BSEG
(XXX and YYY represent the client numbers)
Refer to chapter 10 to understand how to execute a R3trans command.
In each database, the rollback segments needs to be extended so that the largest table in the system can be copied without any problem. In release it only applies to client transports or copies and deleting the tables. In release 4.0 it only applies to transports.
SAP does not support a non-numeric client.
If you get a message “The client copy is locked by another run” and you want to kill the current process to start a new client copy then call transaction SM12 and check the entry RSCLICOP and then delete it. Make sure to check if any clientcopy job is running in the background before deleting the lock. If a job is still running, you should wait till it finishes because you can not start another client copy run.
After the client export is done, the command file might not be created for the SAPscript objects in /usr/sap/trans/cofiles directory, you only find the data file in /usr/sap/trans/data directory. Sometimes the SAPscript objects can be locked properly and the transport request does not get released. To release the SAPscript change request, logon to the source client and execute SE01. Then enter the transport number and try to release it from there. If there is a lock problem then solve it and then release the request.
Transporting from 4.0 to 3.0:
You have to be very careful while doing the transport of a logical database in 4.0. In release 4.0 the buffer of the logical database is changed. Always run RSLDB400 after the import of a logical database. Before transporting the repository objects from release 4.0 to 3.1 you need to know that the names of the repository objects in release 4.0 are extended. Always check the current version of R3trans; you might need for your system to transport objects from 4.0 to 3.1 releases. If your system has SAP release other than 3.1I; you can not transport SAPscript objects from 4.0 to 3.0. The internal buffer is also changed in release 4.0, so GUI screens can not be transported from 4.0 to 3.0.

	
	

	
	
	
	

	

	
	
	
	

	Correction and Transport System ..

	Introduction
The following CTS document is going to help each and every person who is already involved in the correction and transport procedure of this company or wants to know about the correction and transport system(CTS) from SAP. I have tried to cover the SAP versions 2.2, 3.1 and 4.5. I found out that most of our systems in Pandesic are using 3.1H version and users are not using the Transport Management System (TMS); so the Transport Management System is not covered in this document. I used lot of tips to help the basis users to solve the transport problems. Users will find some differences in the features between the 3.1H version and 45B version of Correction and Transport system .This document also covers the CTS difference between 2.2 version and 3.1 version.
I hope each and every person of this company who is performing the transport can take advantage of this document.
The Correction and Transport System
Changes created in the development system must somehow be moved, then incorporated into the test system, then subsequently moved and incorporated into the production system. The SAP Correction and Transport System (CTS) serves this purpose and is the vehicle by which SAP moves objects such as programs, screens, configurations or security settings from one system to the next. Additionally, the CTS ensures consistency between systems by maintaining log entries for any attempted or completed activities. If used correctly, the CTS creates an effective and standardized procedure for managing and recording changes made to the system while providing an excellent mechanism for integrating either newly created objects or existing objects that have been altered to meet the customer’s needs.
Release Changes in CTS
As a user of the CTS it is important that you become highly knowledgeable about its capabilities (i.e. changing objects, incorporating them into other systems and optimal use of existing error prevention methods). As a Basis administrator your goal is hopefully to be able to effectively communicate with other users of your SAP system. Therefore, "speaking the language" of CTS becomes an important aspect of your job. However, with new releases of SAP it is sometimes the case that terminology may need to be changed to better reflect the purpose of specialized utilities or to show the expansion of utility functionality. Such is the case within the CTS. Upon installing the newer 3.0 and higher releases of the system, version 2.x user will find that the correction control utility originally referred to as correction/repair," is now called task.
Additionally, where a transport, previously moved objects in release 2.x, is now the change request in version 3.0 and higher. Although, for the sake of simplicity, this book will focus on terminology specific to software releases 3.0 and higher, learning the differences in the terminology used from one system release to the next can benefit you greatly if you intend to work with various system releases.
Another change that you may wish to note is that from release 3.0 and up, the ABAP/4 development workbench includes the workbench organizer for managing software development objects. More importantly however, is that SAP recommends that the workbench organizer be used, as it has the added advantage of being fully integrated into the ABAP/4 development workbench.
CTS Transaction Terminology: Release 2.x versus 3.0 (& up)
Release 3.0 (& up) Release 2.0
Workbench Organizer (SE09) Correction and Transport System
Customizing Organizer (SE10)
Transport System (SE01)
Change Request Transport request
-Transportable - Consolidation request (K transport)
-Local
- Empty
-Customizing request
Transport request Transport request
-Transport Originals -Transport with change authorization(C type)
-Transport of Copies - Transport without change authorization (T type)
Task Correction/Repair
Tasks
- Development/Correction -Correction request
- Repair -Repair request
Change Request Transport
Object Category
-Repository
-Client Dependent customizing
-Client Independent customizing
IMG Tools -> Customizing
SE09 and SE10 transactions to use Only SE01
SE06 Setup workbench organizer SE06 Setup workbench organizer
The process of integrating objects moved using the CTS is called migration. Migration involves two aspects of the CTS’s functionality, namely the correction control system and a transport system. As objects are migrated from the development environment to the test environment (ideally) and finally into the production environment. The correction control system uses tasks to record changes in the development environment. The transport system uses change requests to move objects from development system to other systems. Using SAP’s correction and transport tools, table data such as configuration and application data, can be moved from one system to another and from one client to another client in any given system.
Once a SAP object has been changed, it is referred to as a "repair. SAP designed the system in such a way that all the changes for any SAP object are automatically recorded. Always the system generates the repair requests for you and after the repair is done to the object it is entered automatically to the repair editor by the repair process. After all the steps to the repair process is done you can release the repairs from the source SAP system database. Later in this chapter we will find more about repairs and how to release the change requests.
Please note that in this chapter the release 3.0 and higher terminology will be used to address the CTS. In the CTS process, after the objects are created or changed in the development environment, a task is assigned to those objects. To automatically generate the tasks in the system, the recording for the individual client should be on in T000 table. It has to be done manually by executing transaction SCC4 and changing the client attributes there as shown in chapter 9. Many objects can be assigned to a single task. It is always recommended to place all the related objects in one task. A change request consists of one task or number of tasks. After the task is released from the system, all the objects from the task get transferred to the change request editor. The second step is to release the change request and export all the objects to the data directory and cofiles directory of the system. The third step is to use the system level SAP command TP in the target system to move the object from one system to another or one client to another. The TP command is executed in the operating system level to import a change request to the target system. It is very important to remember that objects can be directly transported using change requests. When the change recording is not on for a client as we have seen in chapter 9 the change request screen does not pop up for the users automatically; so some times developers put their objects directly in the change request editor to transport objects.
Components of the R/3 CTS system:
The CTS system is actually made up of various components which allow for the movement of objects and help to maintain comparable and up-to-date changes from one system to the next. Here is a list of the components you may encounter while using the CTS to perform various tasks.
-Tasks, Change requests and Repairs
- Correction system or Workbench Organizer
- Transport System
- Development class
- Transport layer
- System types in the CTS pipeline.
- Repository objects
- Customizing objects
- Unix file systems in the transport process
- Important SAP delivery class and table types and tables in the CTS process
- Programs in the CTS process
- Version Management
- TP and R3trans program
Overview of Task, Change Request and Repair:
TASK: Corrections and repairs are recorded in tasks and transported using the change requests. It can control changes to internal components of the system that includes data dictionary objects, ABAP/4 programs, screens, CUA definitions, and documentation. The task can register and can keep the documentation of all the changes to the system objects. Once the objects are locked the system prevents parallel changes to the system objects. For existing objects, the system ensures that only a single original copy of each object exists. The previous version of an object can be restored and two versions of the objects can be compared. The CTS system asks for a change request number (if the recording is on in that client) whenever a customizing change is done or a new object is created with a development class other than $TMP (local object development class). A task is automatically created under a change request. User has to release the task first to release the change request. The user can be able to create or modify the object only after he or she opened a task. Opening a task registers the change with the system. Once the user releases a task, the objects in task get transferred to the change request.
After the unit testing in customizing master client is completed, a task is released to its change request. After a task is released, it can no longer be modified. If the user wants to modify the same objects, which were included in the released task, he has to create a new task. A task can not be deleted after it is released. The attributes also can not be changed. All the objects in the tasks should have a development class other then $TMP(local objects development class); otherwise those objects can not be transported.
A user needs to take the following steps to release a task:
· Select a task
· Press the release icon

· Then the user is going to see a large editor for the documentation. Provide a good documentation about the task and save it.

· Now the task will be released

· Verify that the task is released by looking at the log for the task or if you refresh the SE09 or SE10 screen then the task can be found in released section of that screen.

Important Tips: A task can not be released if it is empty, user does not have the proper authorization, the objects are not locked properly and the objects are not locked in another task or change request. Some objects can be manually added to a task. When creating a change request and task, the user should create the right type of request (CUST or SYST). Changes to customizing objects belong to CUST and Changes to client independent and ABAP/4 development workbench belong to SYST category. If a task is already released then the objects of that task or change request can be easily added to the new one by selecting include template from file menu in SE01, SE09 or SE10.
Change Requests: After a task is released, the objects are moved to a change request. Using the change requests the sap objects get transported from one system to another. There are four categories of change requests: Transportable, Customizing, Local and Not assigned. Change requests containing SYST type changes and CUST type changes belong to transportable category. Only client dependant changes or CUST type changes belong to Customizing category. If the change request contains ‘Local Objects’, then it belongs to Local category. If the change request is created manually through Workbench Organizer and no repository object is assigned to it then that belongs to ‘Not assigned’ category.
After the task is released, if the task does not have a change request then a window pops asking for one as following:
User has to choose from either existing requests category or new request category. It is very important for the user to know that he should not select a change request that is already released. As we have seen before, in a development team usually the team leaders assign the tasks to the developers. After the work is done, developers release their tasks to the change request created by the team leader. To release the change request, select the request and then select the release button in the toolbar..
It is recommended that the users should describe the purpose and status of the development with every change request. This gives complete change documentation for all the developments and the changes made to the system. After the change requests are released, the new versions for those objects are created in the version database of the system. The cycle goes on for every change request created for every change made to the objects. The version database helps the user the compare the old version with the new version and restoring a particular version in case it is necessary.
Important tips: A transport can be created manually through SE01 and different types of objects can be directly added to the editor to get transported to the target system. Also a released change request or task can be included as a template in that transport.
Repairs: The way SAP system is designed, the users can only edit an original version of an object. So the user has to access the system, where the original of an object is located. In the other systems the users can only display the objects. Anytime the user wants to edit an object other than its original system; he has to create a repair for that object. When the repair is done to an object, the entire object is locked. As long as the repairs are not released, the objects in the repairs can not be overwritten by any other transports.
Repairs are displayed separately at the top of the correction and transport menu. User gets a warning if the repaired object in the target is being transported. If the original objects of SAP are changed then repairs are created, also if the original objects of development system are changed in staging or production systems then the repairs are created. To create a repair for SAP objects, those objects must be registered in OSS system and after the objects are registered the registration keys from the OSS system must be applied to the repaired system. The OSS is the online service system that is connected remotely with the customer system and it has the following features for the customers:
Problem and information database
SAP news
Up-to-date release, upgrade and installation information
Online assistance
Registration for SAP software change
Checking the transport logs:
Transport logs are written to common directory in operating system. The logs can be displayed within any SAP system in the CTS pipeline. To examine the log files using SE09 and SE10, select the change request and then Goto -> Action logs and Goto -> Transport logs. Action logs records and shows all the actions in the transport process. For example, export, test import and import. The transport logs keeps all the information about the log files generated by the transport process. A user can also display the logs from transaction SE01. After going to the display screen of a released transport, the user can press the log button to display the logs. The following four levels of information are available in the transport log.
1. Actions performed and the return code for those actions.
2. Additional error messages if any.

3. End-user log

4. Details for developers and other users.

Any level can be selected from the summery of a transport display.
In 45B version you can use the expand button to expand the transport log screen as following:
As we know already from the return code helps a user to know the status of the transport. A return code can be from 0 to12, 0 being the best and 12 being the worst. The following are the return codes and their meanings:
0 Transport was successful in export phase and import phase.
4 Warning messages are there. The objects in the change request are
transported, but there are some warnings the system wants the user to be aware of. For example if you want to transport some object deletions then the system will show you a warning.
8 Individual object could not be transported successfully. For example while using "tp import" command you might get a return code 8 if you are trying to transport user table data to the target system without transporting the table structure.
12 The system has generated a fetal error. The error is not generally caused by the transport, but it can be a database error.
13 Operating system terminated the transport .
Correction System or Workbench Organizer:
The correction system or workbench organizer uses tasks to record all the changes in the SAP system (The recording option for the client must be turned on if you want to record all the changes). The workbench organizer records and manages the changes to objects in the SAP system. There are different types of objects involved in the process. For example ABAP/4 dictionary objects, ABAP/4 programs, Screens, CUA definitions, documentation, Application defined transport commands and Customizing objects. The workbench organizer prevents parallel changes to the same object by ensuring that only one copy of each and every object exists within any particular system. If one developer changes the object then it locks the object for other users until it gets released from the system. The main objective of this is to manage the system in such a way that correction and development work can only be carried out on the original object in the original system. As a user you are only allowed to modify an object if you open a change request to record the changes. The workbench organizer gets activated for every change to the system automatically, then save all the changes to the objects in the original system on a version database that stores all the change versions of a object.
From release 3.0 onwards, The Workbench Organizer is completely integrated in the ABAP/4 development Workbench, which includes the customizing tools. A group of people can work on a project by adding tasks and change requests. Using the SAP security profiles and authorizations access to the functionality of Workbench Organizer can be controlled.
Authorizations for the CTS system
Using the required authorizations you can control the user access for creating, modifying, releasing or exporting the tasks or change requests. SAP provides all the predefined authorizations for Workbench Organizer (transaction SE09) and Customizing Organizer (transaction SE10) and Transport system (transaction SE01). Though the SAP provides essential CTS authorizations for a SAP project, still for further requirements you can define your own authorizations. In a SAP implementation project, different users play different roles. For example, a basis administrator should have all the authorization to configure and manage the CTS system, a functional team leader should have complete authorizations to Workbench Organizer (transaction SE09) and Customizing Organizer (transaction SE10) and functional user or developer at least should have authorizations to edit and release a task. The following profiles from SAP can be used for different areas of responsibility.
S_A.SYSTEM Basis System administrator (user gets All authorizations within the Workbench Organizer and the transport system)
The "S_A.SYSTEM" contains the authorization "S_CTS_ALL" that permits the user to execute all the transactions within the Workbench Organizer and the transport system. This authorization also allows the user to execute the enhanced transport tools (SE03 transaction or Goto->Tools in the Workbench Organizer) and the special function "Set System Change Options" (transaction SE06). We recommend assigning this profile and authorization to only basis administrators for security of the SAP system; so the authorizations for system change options remain in one group of users. If you are a 2.2 user then you must know that from release 3.0 you do not have to logon as DDIC to execute all the transactions Workbench Organizer and the transport system if you have "S_CTS_ALL". Any user can execute those special transactions (for example SE06)
If they have "S_CTS_ALL".
S_A.SHOW Display authorizations to all the basis components
The S_A.SHOW contains the authorization "S_CTS_SHOW" that permits the user to display transport logs, information about tasks and change requests.
S_A.CUSTOMIZ For Project leaders responsible for customizing
The "S_A.CUSTOMIZ " profile contains authorization "S_CTS_PROJEC" and this authorization allows a user to create, edit, and lock and release/export tasks and change requests.
S_A.DEVELOP for Developers in a SAP project
The "S_A.DEVELOP" profile contains authorization "S_CTS_DEVELO" and this authorization restricts the user to development work on tasks. The user can only release the task to a change request. The user is not allowed to change the owner of a task or release a change request.
The authorization object used in the Workbench Organizer and Transport System is called S_TRANSPRT. It consists of the fields Activity and Object in the Workbench Organizer/CTS. The following values are used:
S_TRANSPRT
Activity Description
01 Insert or generate
02 Change
03 Display
04 Print
05 Lock
06 Delete
30 Set up object list
43 Release
51 Initialize
60 Transport
61 Export
65 Reorganization
70 Management, administration
72 Create object lists
75 Release external requests
90 Change owner
Objects in Workbench Organizer/CTS
INIT SE06: Initialize Workbench Organizer and transport system
ORDR Change request
PATC Patches, Hot Packages
PIEC Object list
TASK Task (repair or correction)
TRAN Transport of copies
UPGR Upgrade/Installation
Change request management and Workbench organizer are very important tools used in customizing process of an R/3 system. To customize an R/3 system, first make any changes to the system environment required by specific customer needs. Since all changes that are made to the system are recorded in order to transport changes to another system, any changes you do make are kept consistent between systems. Average environment of SAP consists of three systems. For example: DEV for development, STG/TST/QAS for staging or testing and PRD/PR1 for production. The architecture of all SAP systems involved in the correction and transport process of a SAP implementation project is called a CTS pipeline or CTS landscape.
In a SAP recommended customizing process the following steps are followed.
1. The functional team leader creates a change requests and tasks under it. Then he/she assigns those tasks to the team members for customizing.
2. The team members perform the customizing work and all the changes to the objects are recorded to task/tasks.
3. The team members release the task or tasks manually to change request or change requests.
4. Finally the functional team leaders release the change request/requests and export the objects from the source system database to the operating system.
5. Then the Import process starts into the QAS/STAGE system and the appropriate testing is performed.
6. If the objects are functioning properly in a staging or QA environment, the same change request is moved to production environment. On the other hand if those objects are not functioning the way they are suppose to, then those objects will be fixed in DEV environment and go through the same cycle again.
The CTS pipeline and customizing:
The following is an example of a change request management process in a project where there are three clients in development environment (DEV). Client 100 for customizing and for development and client 300 for sandbox (this client is used as a playground). There will be a QAS environment having only one client 100. After all transports are tested properly in QAS environment, they would be transported to the Production (PRD) client 100 environment.
The customizing process in Client 100:
At the start of a customizing project, the project leader creates a change request and assigns the project team members to it. The customizing organizer then creates a task for each project team member. When the project team member performs a customizing transaction in the IMG, the settings are saved to the task in the change request. A task contains all the customizing settings that the projects team member made during the customizing project.
As project team members finish their project work, they release their tasks. The task objects are then passed to the change request. When all team members have released their tasks, the project team leader releases the change request. The change requests contain all the customizing efforts for the whole project.
The development process in Client 100 or configuration master client:
The development and customizing processes are very similar. A project leader is required to create one or more change requests for all project members and is responsible for the release of that change request for transport to the downstream system. The workbench organizer is responsible for all change requests containing client-independent objects, such as ABAP/4 programs, screens, menus, data dictionary changes and global setting. If a Repository object is created, it must be assigned to an appropriate development class.
In a change request, you can specify which team members’ work on the project. Every team member specified in a change request can access all the objects in the change request. Only project team members are allowed to maintain the objects in the change request. This prevents other users from unintentional changing of any objects.
Important Questions to ask yourself before following the Transport Procedures
- What time will transport take place daily.
- Who is responsible for a change request during the various phases of transporting? For example who will be creating the change requests? Who will release them after the development work is done? Who is going to keep the change request master list for a functional module.
- How will all transports be verified before being distributed and re-distributed? The verification process defined by the functional and basis group to make sure that all the objects of the change request goes through proper test in test system before moving forward in the CTS path.
- What if a transport is successful, but testing proves that the contents are incorrect? The change request should be checked properly before you release it. Sometime the developer uses same task or change request for different development objects; if the wrong objects are transported then you can not perform a good test in the target.
- Is notification sign-off required for transporting? If you get a notification signoff from the user who released the change request, then the objects for a particular configuration are being transported and all those objects should not be changed in the source system until it is tested properly in the target system.
- For example security profile changes will be effective for Client100 (master configuration client) so that only project team leaders will have authorization to create the transport/change request. The project team leads have responsibility as ‘gate keepers’ for the configuration. Following this procedure a SAP project will have two advantages: the control of all the change requests will be handled by one person in that module and every body will not try to configure their own by not talking to each other in the team.
Development Environment:
Enterprise and Project IMG is created and defined in client 300
Project team leader or customizing team leader creates initial IMG view for the projects within the customizing and development client 300.
Project team leader or customizing team leader creates a change request for every IMG view. (Therefore, an IMG view must be the highest unit of customizing activities that can be independently tested or transported.)
Customizing activities occur.
Customizing occurs in the configuration and development client 300.
Once the prototype hierarchy customizing has occurred, the master client (client 100) is created.
Automatic recording of all changes is established in the configuration and development master client 100.
When customizing is complete for a view, it is tested properly in client 300 before applying it manually to the master client 100.
If customizing changes are not up to the requirements after unit testing, they are completed in the configuration and development client 300.
Once unit testing is complete, the customizing is done manually and documented in master client 100; tasks are created for every customizing activity in a view and the project team leader or customizing team leader releases the transport.
Transports are released from the development master into the CTS buffer until the Quality Assurance System is established.
Quality Assurance System/ Test or QA system:
Quality Assurance System QAS is created.
Quality Assurance System is installed.
The CTS buffer contents are transported into the quality assurance test master client.
Any outstanding customizing activities are completed.
The 10-20% customizing that could not be completed in the first phase of transports needs to be completed. The customizing views are created in configuration and development client 300. After the customizing is complete in 100, before the test continues a client copy will be done to create a reset client 050 in DEV with all the customizing and no data. We recommend having a backup configuration master client (in this example client 050) that is a copy of just customizing data from client 100. In case something happens to Master configuration client 100 and configured objects gets corrupted, you can restore the configured objects from the backup client instead of restoring the whole database.
Then the test will continue with the data in client 100 and transported into QA test master client 100.
Validation testing takes place in the quality assurance test master client.
Any discrepancies or customizing changes are done in the configuration and development clients and transported into quality assurance test master.
Test master client is validated and signed off. By validating and signing off from the QAS system, you are ensuring that all the tests are conducted successfully without any error. The entire configuration is working according to the customer’s requirement.
After the signoff procedure is completed in QAS environment, it is time to create the production instance and applying the signed off change requests.
Important Tip: The project or customizing team leader creates a change request for each IMG view. When change requests are associated with an IMG view level, it is necessary that the change requests be created by assigning the IMG views to the appropriate team member or group. This enables the change requests to be integrated within project management and become an integral part of the process.
The following is procedure is very important for the customizing or development process:
1. Release a development change
2. Freeze development of the object(s) included in the change request
3. Import and verify the change in the quality assurance environment
4. Sign-off on the change
5. Release the development object(s) so that further development may be allowed

There are four different kinds of objects that can be transported in SAP environment.
1. Locally created in development environment objects such as tables, dynpros, screens, ABAP/4 programs, etc.
2. Objects originally came from SAP. (Changes to these objects are called repairs)
3. Table entries.
4. Scripts (Forms and layout sets)
To make the CTS process easy for the users, SAP uses workbench organizer and customizing organizer from release 3.0 onward. Later in the chapter we will learn more about workbench organizer and customizing organizer. The following is the complete process to transport objects from one system to another in CTS pipeline using workbench organizer and customizing organizer:
1. For the workbench organizer and customizing organizer to work properly, the CTS system should be initialized and configured first using transaction SE06 transaction. It is recommended to have a CTS pipeline design first before using SE06 transaction. If you know how your CTS pipeline is going to look like then it will be easy to chose the right option from the following screen. In this process all the systems are defined in TSYST table, the transport route is defined in TWSYS table and the recipient systems are defined in TASYS table. The SE06 initialization process goes through screen by screen to configure TASYS, TSYST and TWSYS tables.
2. Make sure that the RDDIMPDP program is scheduled as a background job in each client. RDDNEW PP program should be executed to start the RDDIMPDP in a client. It is recommended to schedule RDDIMPDP program as event driven.
3. Development class and Transport layers needs to be created
4. Customizing and development work starts in development system.
5. Task and Change requests are released from the system using SE09 or SE10 (SE01 can also be used, but not recommended from 3.X onward) and exported to the data file and cofiles of the system.
6. Make sure TP is working properly using different tools.
7. Logon to the Unix level or NT level and do the transport to target system. Going to /usr/sap/trans/bin in the UNIX level and use the tp command. Example: tp import devk902345 qas client<X> U1.
8. If the TMS (Transport manageent system is available from 3.1H) system is available then use that tool for transporting the change request.
9. Check the return codes of the logs in SE10/SE09/SE01 or TMS to find out if the objects are transported properly.
Configuring the CTS system:
The CTS system or the Workbench Organizer (WBO) must be setup at least once using SE06 transaction.The above procedure can be done after the SAP instance is installed. It is recommended to know the CTS pipeline beforehand; when the user is doing CTS configuration using SE06. It is very important to know the roles of all the systems in the CTS pipeline. For a successful implementation of a SAP project, it is very important to design an appropriate CTS landscape. The user has to logon as DDIC in client 000 to configure the CTS system. The DDIC user needs S_CTS_ALL authorization to setup the workbench organizer using SE06.
Important tips: If the user gets a message in SE06 transaction to use the transport management system to do any changes to CTS configuration, then he/she should know that the Transport Management System (TMS) is already configured that system and all the changes to CTS system should be done there.
We will see more about the Transport Management System later in this chapter. User should know different system types before configuring the Workbench Organizer in SE06.
R/3 system types in a typical SAP environment: Integration (Development), Consolidation (Quality Assurance) and Delivery (Production)
In a SAP project the development work is done in the integration system. This system is the original owner of all the objects. The development system does not permit to transport originals to the consolidation system. After the customizing and development work is done, then the pre-defined change requests are released to the quality assurance or consolidation system. The development class of an object defines the integration and consolidation system for that object.
All the change requests are transported to the consolidation system using transport utility TP. Then all the changed objects are tested and verified in the consolidation system. This system is used as a staging area for the changed objects, so this system is also called staging system. The correction of original object is not allowed here; any change to the original objects is called a repair. SAP recommends doing the corrections only in the original system or in this case development system except some special scenarios.
After all the change requests are tested properly in the consolidation system, they get transported to the delivery or production system. In a CTS pipeline there can e multiple delivery or production systems.
To make the multiple delivery systems work properly in the CTS pipeline; they should be defined properly in the TASYS table and in Workbench organizer settings.
Figure 10.5
In the initial screen for setting up the Workbench Organizer SE06 as shown in figure 10.5 , the <sid name> appears by default. The system picks up the exact sid name that was given to the SAP instance when it was installed. This name is very unique in the CTS pipeline. Also as shown in figure 10.5 the system status box there are two fields: R3 standard installation and Database copy or migration (in 45B system); there are three fields as: new installation, database copy and modified with workbench organizer in 3.1H version.
The first entry "New installation" can be used if it is a new installed system or the system was installed from SAP R/3 CDs using R3INST utility.
The second entry "Database copy" can be used if the system is database copy of another R/3 system.
For example, DEV system is installed first and then it was copied to TRN system for end user training. Now while doing the configuration for Workbench Organizer in TRN system, the user can use the entry "Database copy".
The third entry "Modified with the Workbench Organizer" is used when the Workbench Organizer is already been configured.
In the right hand side of the 3.1H SE06 transaction screen "System configuration" box is there. To chose the right entry from this box, the user should know how many systems are there in the CTS pipeline and what role each system will be playing. For example if there are three systems in the CTS pipeline and they are acting as develop, consolidation and delivery system then the user should chose "3 system group". It is very important for the user to know that the option that will be selected here can directly affect the TSYST, TASYS, TWSYS and DEVL tables.
The following are the options in system configuration box:
Single system: This entry is selected if there is only one system in the CTS pipeline. This system will act as development, consolidation and delivery. Usually in very small implementation (training centers) this kind of system is found.
Test and Production system: In this case the test system acts as integration and consolidation; the other system acts as a delivery system. The current system can be a test system or it can be a production system or delivery system.
3 system group: This entry is chosen if there are three systems in the CTS pipeline. Three of them are acting as development, consolidation and production system. This kind of implementation is very common in the SAP world.
Any configuration: In this case user needs to enter the values in TSYST, TASYS and TWSYS tables. When the CTS pipeline is real complicated or user wants to configure the Workbench Organizer in his/her own way this entry is chosen.
By selecting the "create" button after the selection is done, user can start configuring the Workbench Organizer. The list of available systems is shown in the next screen and the user can enter other systems here. After each screen user should continue with the "continue" button until the whole process is done.
It is better to check TASYS, TSYST, DEVL and TWSYS tables to see if all the entries are defined correctly. The consolidation and delivery system name can be changed any time after the configuration is done, but the user has to release all the change requests from the system to do that.
Following are the tables used to setup the Workbench Organizer:
TSYST (figure 10.6): Table TSYST defines all the systems in the CTS pipeline. This table must be identical in all the systems in the CTS pipeline.
Figure 10.6
DEVL (figure 10.7): Table DEVL contains all the transport layers. As we have seen before a transport layer defines the transport path from the integration system to the consolidation system. DEVL also must be identical in all the systems in the pipeline.
Figure 10.7
TASYS (figure 10.8): This table defines all the systems in the CTS pipeline for which change request will be delivered automatically after the successful import into the consolidation system. Change requests other than those defined by the consolidation path can be made to the delivery system if the cross transports are allowed. This table must be identical in all the system in the CTS pipeline.
Figure 10.8
TWSYS (figure 10.9): This indicates the consolidation routes for the change requests. This table also must be identical in the CTS pipeline.
Figure 10.9
Define the appropriate system change option:
User can follow path SE06 -> System change option to set the system change option. There are four different change options and user can use each of this option in different systems and in different phase of the project.
Objects cannot be changed: This option does not allow creation or changes to the objects in ABAP/4 Development Workbench. This option is suitable for a production environment when the objective is not to allow any user to do any change to the system.
Only original objects: With this option only the SAP owned or system owned objects could be changed. For example when SAP specialists are working in the production environment and they want to change some system objects, this option can be chosen.
All customer objects: All objects not owned by SAP can be modified or repaired using the Workbench Organizer. This is the right option for a sand box system, where end users want to change their customizing or development objects. In this environment it is not secured to give the system object change access to the users.
All objects can be changed: This option allows changing any object in the system. With this option the system is totally open for any changes. All changes are made using the Workbench Organizer. This option is chosen generally in the development or sandbox environment.
Client Dependant and Client Independent objects
There are two kinds of SAP objects: client dependent and client independent. A SAP system can have several clients. Objects used in several clients are called client dependant objects such as ABAP/4 programs. Objects used in a specific client are called client dependant objects. In SAP system, a table can be client dependant or client independent. The best way to know whether a table is client dependant or not a user can open the table attributes in SE12 or SE11 transaction and look for a mandt field. If the mandt field is there in a table then that table is a client dependant table. MANDT implies the client name or number.
Workbench Organizer and Customizing Organizer:
The objectives of Workbench Organizer are logging of system changes with change management, organizing development objects, revision management and transport functionality. The change management is automatically activated. It registers all changes, maintains original copies and tracks the customization in each client. The Workbench Organizer records and controls changes to the following objects:
ABAP/4 dictionary objects, ABAP/4 programs, Screens, User interface definitions, Documentation, Application-defined transport objects and customizing objects.
The Workbench Organizer is automatically activated every time a user edits a repository object. The recording of the objects in the request ensures that all changes made in the ABAP/4 development workbench is customizing are registered. The Workbench Organizer is fully integrated into the ABAP/4 development workbench and the customizing tools. Using the above feature user can switch to the Workbench Organizer from all the transactions of customizing and ABAP/4 development workbench. The entire Workbench Organizer change requests and tasks can be found in transaction SE09 as we have seen before in figure 10.1.
The team leaders in a SAP project implementation divide the project work using the Workbench Organizer. Different change requests are created for different developers to record all the changes in the customizing and development process. The process of linking several users to enable to work in-group in a project is controlled by tasks, which belong to a common change request. Developments, Corrections and repairs are recorded in tasks a transported using change requests. First the team leader creates a change request for a particular group of developers or individual developer. The tasks under the change requests are assigned to different developers. A very important feature of Workbench Organizer is the transport type and the target system is automatically assigned and no longer need to be maintained by the user as 2.2 version. The change requests record all the changes made to development objects or customizing settings. The customizing objects and the ABAP/4 Development Workbench objects are recorded in separate requests. The tasks are released first by different developers that are assigned to them in the project and then the team leaders or the appropriate user release the change requests to export them to the common transport file system. In SE10 and SE09 transactions, the users can see the requests and task numbers with the short descriptions and user names. Authorizations are available to restrict the access of particular user groups to the functions of the Workbench Organizer. Once the objects are included in a change request, they are locked against all the development work. Only the users who created the change request can edit it. Other users are only allowed to display the objects in the request, until they have been released. Each development object is assigned to a development class that indicates the area that object belongs to. The objects of entire ABAP/4 Development Workbench are based on development classes.
Customizing Organizer in detail: the Customizing Organizer manages the customizing requests. The Workbench Organizer (SE09) only records the changes to SYST objects (ABAP/4 repository and customizing for all clients), the SAP R/3 system also provides Customizing Organizer transaction (SE10) that can used to record changes to both SYST and CUST (client specific customizing) objects. As we know already in release 3.0 and onward the Workbench Organizer, Customizing Organizer and the transport system also automatically record all changes to customizing settings. If the recording is on for the client in client maintenance process using T000 table, mainly customizing requests are generated. This ensures that the changes to customizing objects can be transported to target client with out affecting the other clients in the target. If the recording is not on for the source client then no guarantee can be given that the result of the transport can be restricted to one client in target system. If the transport contains client independent objects, then it is recommended from SAP to adjust the corresponding settings in the target client in order to assess the changes in all the clients. The figure 10.10 shows an example of client level settings.
Figure 10.10
Role of the client shows whether the client is development, test, demo, training, and customizing or production client.
Record Keeping can be set for each client separately. For example no change option does allow any users to change anything in the system.
Logon procedure lock by the flag is set in the target client while the client copy is going on. Only SAP* and DDIC users are allowed to logon at this time. Other users get the warning message about the client copy when they try to logon.
Client cascade lock is restricted to user DDIC to prevent a normal customer client from being damaged by an upgrade. In upgrade process many client specific tables are cascaded in all customer clients. For example in client 066 (early watch client) this setting is applied, because the client is not meant to use the normal SAP standard.
Execution of the CATT (Computer Aided Test Tool) procedure allows restarting test run repeatedly. This process changes the database contents, so user should know whether to declare this as property in the client or not.
In Customizing Organizer the configuration decides whether customizing requests will be transported or it is local. After the Customizing Organizer decides that the request will be transported, it finds out the destination of the change request. The customizing objects are not locked against the other users. They do not have any original system like ABAP/4 Development Workbench. Changes to the customizing settings can be recorded in a development/correction that is assigned to a change request or to a customizing request. In transaction SE10 we can see SYST category change requests and CUST category change requests. Most of the changes made to the customizing objects fall into CUST category. Client independent customizing and the development objects from the ABAP/4 Development Workbench fall in SYST category and are recorded in Workbench Organizer, but also we can see them in Customizing Organizer (SE10). The following figure 10.11 displays an example of Customizing Organizer.
Figure 10.11
Transport system:
Transport system is a complementary tool to the workbench organizer. The workbench organizer records all the changes in a SAP system and transport system transport all those changes to other SAP systems. The transport system is used to move objects from one SAP system to another SAP system in an orderly manner. The transport system uses the change requests to copy objects from a source system to the target system. The objects are transported in two steps:
1. All the objects from the source system database are exported to common transport directory.
2. The objects are imported to the target system database using a SAP UNIX command TP.
All the SAP systems in the CTS pipeline share a common transport directory /usr/sap/trans; that file system is mounted to all the other systems. All the R/3 systems in the CTS pipeline or landscape must have unique names or sid ids. For example development system can have a unique <SID> name DEV. In the case where objects at the source and target systems share a common name, the source system object as part of the transport overwrites the target system object. If a change request has been recorded for an object indicating that it is to be deleted, this task will be accomplished by the system after the transport is complete.
As we have seen earlier in this chapter in a development project, the team leaders define the change requests and the tasks first for all the team members. The team members start doing the customizing and development work and all the changes get recorded in the tasks. After the team members release all the tasks, the team leaders release the change requests. In the release process all the objects get exported to the common transport directory and the transport to the appropriate target system takes place at the Unix level or operating system level.
If the recording for a particular client is on then all the customizing table entries automatically get recorded in the workbench organizer. Users can also manually add the entries to the editor of the change requests and transport them from one system to another. A change request contains a list of objects to be transported, information on the purpose of the transport, the type of the transport that is taking place, one of two possible request categories (SYST or CUST) and the target system.
All the ABAP/4 repository and customizing for all the clients belong to SYST category while all client specific customizing belong to CUST category. Tasks and change requests from CUST category can only have CUST category objects; that is client specific. As SYST allows combination of objects the CUST category can be a part of SYST category. The tasks and requests of category SYST can have CUST category objects too. The CUST category is like a subclass of the SYST category.
In figure 10.12, we can see how the tasks and change requests are presented in a tree structure for a user in SE09.
Figure 10.12
Though from release 3.0 it is recommended to use SE09 or SE10 to perform all the CTS tasks, you can still create a transport request using transaction SE01 and add the objects to it as release 2.0. The user can go through the menu from Workbench Organizer to come to SE01 (The SE01 screen has changed from version 3.1 to 4.5 B). The path is Environment -> Transport system. To create a new transport request a user can click on create button. The user can use different transport types (K- Transportable change request, C- Transport of originals and T- Transport of copies) as described in transport types section of this chapter. In version 4.5B version, in se01 screen the user can chose transports of copies, relocations to create a T type transport or can display an individual change request.
Also the user can click on the create button to create a change request as shown in the following figure 10.13.
Figure 10.13
It is very important for the users to provide the right information for the transport. For example the target system from development system in a project is usually a staging or Quality Assurance (QA) system except some special cases.
In version 3.1 and below the C transport type is chosen if the user wants to move the original objects from source to target. That means the target system is going to be the owner of the objects after the transport. If transport is done to an integration or development system from a sandbox system the C transport type is chosen. K transport is chosen, if the target is test, consolidation, and delivery or production system.
The transport types and how they are used
K type: The system owner does not get changed with K type transport. This kind of transport is only allowed to consolidation and production system. After the K type of transport is done no correction is allowed to those objects. Any changes to K type transport objects in consolidation system are called repair.
The repairs can be done to those objects if the change option is selected in SE06 and change option is there in client level selection in T00 table. Generally K type transport is used for stage and production environment.
C type: With the C type transport the ownership of that object is also transferred to the target. After the transport is done, the target system is the owner of the transported objects. The objects will be originals of the target system. These kind of transports are generally done in a four tier architecture, where a bundle of development objects can go from the sandbox environment to development environment or development environment to integration environment and vice versa. SAP recommends doing these transports when the objects should move to another system for further development work.
T type: T type is called a transport of copy. The ownership of the object remains with the source; the target system just gets the copy of the objects. When a sap patch is applied to the development system and transported to other systems, those are perfect example of T type transports.
After the short description, target system and transport type is provided, now the user is ready to put the objects in the transport editor. When working with Workbench Organizer, the objects are automatically in the editor after the tasks are released. To go to the editor user can press the editor button on the toolbar. The system now will display a maintain object list window as shown in the following figure 10.14.
Figure 10.14
User can enter the objects in the editor by pressing the insert button on the tool bar. There are following five columns in the maintain object list screen:
PgmID Obj Obj. Name Funct. ObjStatus
R3TR TABU ZBAS K LOCKED
PgmID: This is used for an object type in the system. R3TR is a very important program ID used for table, data elements and domains. User can use F4 key to find all the possible entries.
Obj: This is used for the object type. For example TABL is used for the table structure, TABU for data, DOMA for the domain, TRAN for transaction. Using the F4 key can see all the object types available.
Obj. Name: This is the name used to identify the object within the system. If the object is a table then the table name is used here.
Funct: This field is normally grayed out but can be used if part of the table contents s need to be transported. Although some object types do not have an associated object function, for those that do, simply select the <Extras> menu, then the <Modify Object> function to access the Funct field.
The following are the possible entries for Funct field:
Normally: transport to the target system
D The object was deleted (only functions with deleted objects)
M Delete and recreate on the database
K Object keys according to entries in the key list. If you drill down on an object in the transport editor, all the table keys can be found.
K is the most used function type. Users generally see this kind of transport request. Most of the time some entries or keys are transported from the table using function type K. while doing the customizing, users can create a manual request and use this key to take the right entries or keys from the table.
Obj. Status: This is the object status field. This field is maintained by the system. The following are the possible entries for this field and each of this entry has different meaning to it.
ObjStatus Description
LOCKED Object locked
NOT_IMP Object not imported
ERR_IMP Error importing object
OK_IMP Object imported
OK_GEN Object imported and generated
A transport request should be protected using the path Request/task -> Request -> Protect, so that no other tasks can be assigned to the transport request. If the transport is protected, the objects in the transport object list get a LOCKED status and no other users can modify the objects in the list. The protection utility is very helpful for those developers who work on the same objects for a long period of time and not ready yet to release the transport. If the transport has a LOCKED status instead of LOCKEDALL status, then some of the objects in the request are not locked. The status of a transport can be DOCUMENT or RELEASED too.
When the status of a transport is RELEASED, that means the transport is already released from the system and incorporated into a target system. It also cannot be modified anymore. If the status is DOCUMENT, then the owner of the transport is still modifying the transport request. If the transport is a brand new transport and no objects are added yet to the transport; then the status of that transport will be DOCUMENT.
After the objects are placed in the maintain object list window without any error, it should be saved by clicking the save button. Now you are ready to release the transport by pressing the release button. After the transport is released the objects are no more locked and the transport can not be modified anymore. If the user wants to work on the same objects again then a new transport must be created. The release job exports the objects from the transport to the operating system. A data file and cofile is created for that transport. The SAP utility TP uses the cofile or a control file to do the transport to the target system. The release function also performs an import test in the target system to verify if the objects in the transport would overwrite originals. The user can disable this function by using "<SID>/testimport = no" parameter in TPPARAM file. Where <SID> would be the System IDentification tag created when the system is installed (e.g. DEV for the development system). The user should always check the system log after doing the transport to insure that the transport has proceeded as expected and that there have not been any errors. From the return code of the export, user can know whether the objects were released and exported successfully.
Development class:
A development class is a set of development environment objects that are mutually dependent upon one another. The development class binds a class of objects together. Those classes of objects must be developed and transported together. By basing the development work on development classes, a developer or customizing person can ensure that no required objects are missed. A developer can generate a list of the objects that belong to a class; then he/she can use this list as a command file in a change request. A development class also specifies the attributes that help to organize tasks and change requests. A development class specifies an integration and a consolidation system for the objects in the class. The development class can be defined in the TDEVC table. To create a development class use the menu path tools -> ABAP/4 Workbench and select the button <Object Browser>. Enter the name of the development class you wish to create and press the <display> button. You will be asked if you wish to create a development class. Complete the development class screen and make sure to provide a brief description.
Transport layer:
A transport layer is assigned to each development class and therefore also to all objects contained in the class. A transport layer defines the transport path from the integration system to the consolidation system or from development system to the staging system. For example the transport layer is like a bus and the transport objects of different development class are the passengers in the bus. The bus moves from source (DEV system) to target (Stage system) and then to production (PRD) system.
Table DEVL contains the definition of the transport layers. DEVL must be identical in all the systems in the CTS pipeline. Review the transport layer table DEVL using transaction SE06 and either the display button or Configuration->Display in your installation. The listing will display all transport settings for the current R/3 system. To review the contents of a specific table such as DEVL containing the transport layers, use the appropriate button on the button bar or the menu path Environment -> Transport layers.
System Types in the CTS pipeline:
Please note that your implementation may use entirely different system names than these, depending on the preference of the person who did the initial installation. It is the purpose of the system that is important. However, some set-up are such that some of these function may be incorporated into a single implementation, not used or replaced by other functions that better serve the client needs.
Integration systems- For carrying out development work and performing system testing.
Development systems- For developing critical parts of a project in a isolated environment
Consolidation or Staging systems- For the final testing and freezing the development objects. When you totally stop changing any customizing objects in a SAP development system that is called freezing.
Recipient systems or Production systems- After all the objects are tested properly in the Consolidation system, they are transported to the production environment. The Sap customer goes live with this system.
Repository objects:
The ABAP/4 development objects play very important role in SAP environment. Such objects consist of several components. R3TR is the object type for complex ABAP/4 development workbench objects. LIMU is the object type for individual components of a complex project. For example LIMU REPO is used for a report. For example, an object type R3TR PROG has an ABAP/4 program, user interface definitions, and screens, with text and documentation. Most repository objects belong to two object types: R3TR and LIMU. There is another object type R3OB; and they are used for application-defined objects and are developed and programmed by SAP application development group. The object types are used in the task and change request editor to transport objects from one system to another. The SAP pre defined object types helps the developer to transport different kind of objects. For example a single screen can be transported using the predefined object types from SAP. In addition to the predefined SAP objects, the developers can also define and change his own repository objects.
Customizing Objects:
According to the customer requirements some objects are changed in the process of customizing; those objects are called customizing objects. For example, the customizing objects can be the client specific table entries grouped together to form a customizing objects for specific applications.
There are five types of R/3 system changes:
1. Customizing: This type of system changes, involve customizing using the special customizing transaction. Changes are scheduled in advance.
2. Client or customer developments: Creation of customer specific objects.
3. Enhancements: Customer changes the SAP repository objects according to the requirement.
4. Modification: Customer changes the SAP repository objects. In this case customer version has to be modified to match the new SAP version. In the upgrade, SPDD and SPAU plays a very important role to determine whether to keep the modifications to the existing object or returning to SAP standard.
5. Advanced correction: To apply bug fixes to the R/3 system from SAP directly using a hot package.
For each change request, the developer needs to include required documentation that gives meaningful information to other users who can refer the change request any time in the project and understand the objective behind it. All changed objects are recorded automatically in the object lists of a change request. The documentation and version management gives the user a complete control over all the configurations done in a R/3 system. It is very important for the developers to know that the development of the original objects should be performed in the appropriate development environment to ensure the stability and consistency. Only original objects may be modified to prevent parallel work on the same object. To make the implementation cycle (development -> stage-> production) go smoothly, SAP recommends Development, Consolidation and Delivery systems (different terminology are used in different environment). Development takes place in the integration system. Changed objects are then released to the consolidation system. The integration system is therefore commonly known as the development system. The changed objects are tested and verified in the quality assurance or consolidation system. After the successful testing, they are transferred to the production system.
The Workbench Organizer is linked to the transport system; and we have already learned how the transport system works. Transport system uses change requests to carry objects from one system to another. Each change request has its own transport log; this log keeps all the transport information about that change request. The Information system is an important tool in Workbench Organizer (transaction SE03). The Information system assists the users to display, analyze, edit and find tasks, transports and change requests. The following figure 10.15 shows an example of the information system.
Figure 10.15
Operating system level files in the transport process:
The SAP C program TP, requires a special file structure for the transport process. The file system is operating system dependent. TP uses a transport directory or file system, which is called /usr/sap/trans.
The /usr/sap/trans file system is generally NFS mounted form the development system to other systems unless a system is defined as a single system in the CTS pipeline. All the sub directories should have <SID>adm as the owner and sapsys as the group; and proper read, write and execute access should be given to owner and the group. The TP imports are always performed by <SID>adm.
The following are the subdirectories in /usr/sap/trans:
/data
/cofiles
/bin
/log
/actlog
/buffer
/sapnames
/tmp
/usr/sap/trans/data: holds the data of transport objects after they are released . The example of a data file is R904073.DEV. The extension DEV means the data file was released from the DEV or development system.
/usr/sap/trans/cofiles: The cofiles directory holds the command files for all change requests. These files are like a command or control files used to import the data files. The common directory for CTS system is /usr/sap/trans. After a change request is released from the source system , the data is exported immediately to the file system of the operating system. The SAP transport utility TP uses the cofile to transport a data file. The example of a file in cofiles directory is K904073.DEV.
/usr/sap/trans/bin: holds the most important file TPPARAM in the CTS system. TPPARAM file has all the information about the CTS systems in the CTS pipeline. TPPARAM file is the parameter file for the transport program TP and it is the common file for all the systems in the CTS pipeline. As you know already that /usr/sap/trans should be NFS mounted to all the systems in a CTS pipeline, TP program has access to the TPPARAM file from all the systems. The following is an example of typical TPPARAM file for five SAP systems in the CTS pipeline:
#@(#) TPPARAM.sap 20.6 SAP 95/03/28

Template of TPPARAM for UNIX #

First we specify global values for some parameters, #
later the system specific incarnation of special parameters #

global Parameters #

transdir = /usr/sap/trans/
dbname = $(system)
alllog = ALOG$(syear)$(yweek)
syslog = SLOG$(syear)$(yweek).$(system)

System spezific Parameters #

Beispiel T11 #
DEV/dbname = DEV
DEV/dbhost = sap9f
DEV/r3transpath = /usr/sap/DEV/SYS/exe/run/R3trans
QAS/dbname = QAS
QAS/dbhost = sap8f
QAS/r3transpath = /usr/sap/QAS/SYS/exe/run/R3trans
TRN/dbname = TRN
TRN/dbhost = sap17
TRN/r3transpath = /usr/sap/TRN/SYS/exe/run/R3trans
PRE/dbname = PRE
PRE/dbhost = sap19f
PRE/r3transpath = /usr/sap/PRE/SYS/exe/run/R3trans
PRD/dbname = PRD
PRD/dbhost = sap18f
PRD/r3transpath = /usr/sap/PRD/SYS/exe/run/R3trans
/usr/sap/trans/log: holds the entire log files, trace files and statistics for the CTS system. When the user goes to SE09 (workbench organizer) or SE10 (customizing organizer) transaction and opens the log for a transport, the log file for that transport will be read from /usr/sap/trans/log directory. Each change request should have a log file. Examples of log files are DEVG904073.QAS, DEVI904073.QAS and DEVV904073.QAS. The name of a log file consists of the names of the change request, the executed step, and the system in which the step was executed:
<source system><action><6 digits>.<target system>
Now we can analyze the above example DEVG904073. QAS. The <source system> = DEV, <action> = G or report and screen generation, <6 digits> = 904073 (these six digits numbers are exactly the same number as the six digits of the transport) and the <target system> = QAS
Possible values for <action> are:
A: Dictionary activation
D: Import of application-defined objects
E: R3trans export
G: Report and screen generation
H: R3trans dictionary import
I: R3trans main import
L: R3trans import of the command files
M: Activation of the enqueue modules
P: Test import
R: Execution of reports after put (XPRA)
T: R3trans import of table entries
V: Set version flag
X: Export of application-defined objects.
/usr/sap/trans/actlog: holds action log files. The example of an action file is DEVZ902690.DEV. The following are the contents of the file:
1 ETK220 "==" "=================
=============================
1 ETK191 "04/30/1998" Action log for request/task: "DEVK902690"
1 ETK220 "==" "=================
=============================
1 ETK185 "04/30/1998 18:02:32" "MOHASX01" has reincluded the request/task
4 EPU120 Time... "18:02:32" Run time... "00:00:00"
1 ETK193 "04/30/1998 18:02:33" "MOHASX01" owner, linked by "MOHASX01" to "DEVK902691"
4 EPU120 Time... "18:02:33" Run time... "00:00:00"
1 ETK190 "05/04/1998 11:02:40" "MOHASX01" has locked and released the request/task
1 ETK194 "05/04/1998 11:02:40" **************** End of log *******************
*
4 EPU120 Time... "11:02:40" Run time... "00:00:09"
~
~"DEVZ902690.DEV" 10 lines, 783 characters
/usr/sap/trans/buffer: transport buffer of the target systems; contains control information on which requests are to be imported into which systems and in what order the imports must occur. The /usr/sap/trans/buffer will have a directory for each system in the CTS pipeline. For example the buffer file for DEV system is /usr/sap/trans/buffer/DEV.
/usr/sap/trans/sapnames: holds information pertaining to transport requests for each system user. There are files for each user who released change requests from the system.
/usr/sap/trans/tmp: holds information about temporary data and log files. While the transport is occurring the Basis administrator can find a file that is related to the transport in the tmp directory; that file shows the exact status if the transport (What objects are being imported at that time).
Important SAP delivery class and table types and tables in the CTS process:
Delivery class
The delivery class defines who (i.e. the SAP system itself or the customer) is responsible for maintaining the table contents. In addition the delivery class controls how the table behaves in a client copy and an upgrade. For example when you select a SAP defined profiles to perform a client copy, certain tables are selected according to their delivery class. DD02L table can show what delevery class a table belongs to.
The following delivery classes exist:
A: Application table.
C: Customizing table, maintenance by customer only.
L: Table for storing temporary data.
G: Customizing table, entries protected against overwriting.
E: Control table.
S: System table, maintenance only by SAP.
W: System table, contents can be transported via own TR objects.
Table type
The table type defines whether a physical table exists for the logical table description defined in the ABAP/4 Dictionary and how the table is stored on the database.
The following are different table types in SAP:
Transparent Tables
There is a physical table on the database for each transparent table. The names of the physical table and the logical table definition in the ABAP/4 Dictionary are same. For every transparent table in SAP, there is a table in database. The business and application data are stored in transparent tables.
Structure
No data records exist on the database for a structure. Structures are used for the interface definition between programs or between screens and programs.
Append Structure
An Append structure defines a subset of fields which belong to another table or structure but which are treated as a separate object in the correction management. Append structures are used to support modifications.
The following table types are used for internal purposes, for example to store control data or for continuous texts:
Pooled table
Pooled tables can be used to store control data (e.g. screen sequences, program parameters or temporary data). Several pooled tables can be combined to form a table pool. The table pool corresponds to a physical table on the database in which all the records of the allocated-pooled tables are stored.
Cluster table
Cluster tables contain continuous text, for example documentation. Several cluster tables can be combined to form a table cluster. Several logical lines of different tables are combined to form a physical record in this table type. This permits object-by-object storage or object-by-object access. In order to combine tables in clusters, at least part of the keys must agree. Several cluster tables are stored in one corresponding table on the database.
Tables in CTS process:
TRBAT and TRJOB:
TRJOB and TRBAT are the major tables in the CTS process. After TP program has sent the event to the r3 system, RDDIMPDP checks table TRBAT in the target system to find out if there is an action to be performed. Mass activation, distribution, or table conversions are the examples of actions. If there is action to be performed, RDDIMPDP starts the appropriate program in the background task. RDDIMPDP then reschedules itself.
By checking table TRJOB, RDDIMPDP automatically recognizes if a previous step was aborted, and restarts this step. For each transport request , TP program inserts an entry into table TRBAT. If the return code 9999 in this table then the step is waiting to be performed. Return code 8888 indicates that the step is active and currently being processed. A return code of 12 or less indicates that the step is finished. In addition, TP inserts a header entry to let the RDDIMPDP program know to start processing. The column return code will therefore contain a B for begin. When RDDIMPDP is started, it sets the header entry to R(un), and starts the required program. When all the necessary actions are performed for all the transport requests, the column return code contains all the return codes received, and the column TIMESTAMP contains the finishing time. The header entry is set to F(inished). TP monitors the entries in TRBAT and TRJOB tables. When the header entry in TRBAT is set to finished. The entry in TRJOB is deleted.
Transport Tables SE06
TDEVC - Development classes
TASYS - Details of the delivery. Systems in the group that should automatically receive requests, have to be specified in table TASYS.
TSYST - The transport layers will be assigned to the integration systems. (Define all systems)
TWSYS - Consolidation routes (define consolidation path)
DEVL - Transport layers are defined here
In "Configuring the CTS system" section, We will learn more about the transport tables in SE06 transaction
Programs in the CTS process:
In the CTS table section we learned about the RDDIMPDP program. RDDIMPDP program needs to be scheduled in all the clients in an instance. It is recommended to schedule the RDDIMPDP as event driven.
RDDPUTPP and RDDNEWPP programs can be used to schedule RDDIMPDP program in the background.
The ABAP/4 programs that RDDIMPDP starts are determined by the transport step to be executed that is entered in the function field of table TRBAT.
Function Job Name Description of transport Steps
J RDDMASGL Activation of ABAP/4 dictionary objects
M RDDMASGL Activation of match codes and lock objects
S RDDDISOL Analysis of database objects to be converted
N RDDGENOL Conversion of database objects
Y RDDGENOL Conversion of matchcode tables
X RDDDICOL Export of AD0 objects
D RDDDIC1L Import of AD0 objects
E RDDVERSE Version management update during export
V RDDVERSL Version management update during import
R RDDEXECL Execution of programs for post - import processing
G RDDDIC3L Generation of ABAP/4 programs and screens
Version Management:
One of the important features of Workbench Organizer is Version Management. This feature works for all the development objects. Using the version management feature the users can compare and retrieve previous versions of objects.
Version management provides for comparisons, restore of previous versions, documentation of changes and assistance in the adjustment of data after upgrading to a new release. With the release of a change request, version maintenance is automatically recorded for each object. If an object in the system has been changed N times, it will have N delta versions and one active version. To display version management, for ABAPs use transaction SE38 and for tables, domains and data elements use SE11. The path to follow is Utilities -> Display version. Using version management the users can view existing version for previously created ABAP code, make changes to the code, compare code versions and restore original version of the code. Now the users will be restore previous versions without cut and paste steps of the past.
TP and R3trans program:
The basis administrator uses TP program to transport SAP objects from one system to another. TP is a C program delivered by SAP that runs independently of the R/3 system. TP program uses the appropriate files located in a common transport directory /usr/sap/trans. TP starts C programs, ABAP/4 programs and special operating system commands to its job. R3trans is one of the most important utility program called by TP. Before using the TP program, the basis administrator needs to make sure that the CTS system is setup properly and the right version of TP is running in the system. The TP program is located in the run time directory /usr/sap/<SID>/SYS/exe/run directory. It is automatically copied in the install process. A global parameter file TPPARAM that contains the databases of the different target systems and other information for the transport process controls TP. The global parameter file determines which R3trans is used for each system. If the parameter r3transpath is not defined properly then no export and import can be done. The basis administrator should make sure that the default value "r3transpath" is properly defined. Later in this chapter we will learn more about TP and R3trans; also we are going to see how they are used.
Configuring the TPPARAM file:
Each time TP is started, it must know the location of the global parameter file. As we have seen before TPPARAM file should be in directory /usr/sap/trans/bin. The parameters in TPPARAM can either global (valid for each and every system in the cts pipeline) or local to one system. Th parameters are either operating system dependant (these parameters preceded by a keyword corresponding to the specific operating system) or database dependant (contain a keyword corresponding to a specific database system).
The global parameter file provides variables that can be used for defining parameters. The variables can be defined in format: $(xyz). The brackets can be substituted with the "\"-character if required.
The following pre-defined variables are available for the global parameter file:
$(cpu1): The CPU name can be sun or as4 for example. In heterogeneous networks this variable is very important.
$(cpu2): Acronym for the name of the operating system. The example for this variable can be
hp-ux, or sunos . This is an operating system specific variable.
$(dname): Used for the day of the week (SUN,MON,....).
$(mday): Used for the day of the current month (01-31).
$(mname): Used for the name of the month (JAN...DEC).
$(mon): Used for the Month (01-12).
$(system): R/3 System name.
$(wday): Day of the week (00-06, Sunday=00, Monday=01, Tuesday=02 and so on).
$(yday): Day of the current year (001-366). Using the number any day of the year can be chosen.
$(year): Year (Example:1998 or 1999).
$(syear): Short form of the year (two positions).
$(yweek): Calendar week (00-53). The first week begins with the first Sunday of the year.
For the database connection:
The transport environment also needs parameters to connect to the R/3 System database. As we know already the every instance in the R/3 CTS pipeline has its own database, therefore specific parameters should be defined for each database system. From dbtype parameter of RSPARAM file, TP program identifies the database system.
The two parameters "dbname" and "dbhost" are required for ORACLE databases.
DBHOST: is the name of the computer on which the database processes execute. TCP/IP name of the host if NT is being used.
DBNAME: is the name of the database instance.
As of Release 3.0E, two new parameters have been introduced.
DBLOGICALNAME: The default value is $(system). The logical name that was used to install the database.
DBCONFPATH: The default value is $(transdir).
The parameters "dbname" and "dbhost" are also used for INFORMIX databases in an installation:
DBHOST: Same as Oracle.
DBNAME: Name of the database instance, uppercase and lowercase are distinguished here.
INFORMIXDIR : "/informix/<SAPSID>" is the default value. Defines the directory namewhere the database software can be found.
INFORMIXSQLHOSTS: "$(informixdir)/etc/sqlhosts[.tli|.soc]"is default value under Unix. The name of the SQLhosts file with its complete path is defined with this parameter.
INFORMIX_SERVER: "$(dbhost)$(dbname)shm" is the default value. The name of the database server may be specified for a local connect.
INFORMIX_SERVERALIAS: "$(dbhost)$(dbname)tcp"is the default vlue. The name of the database server can be specified for a remote connect.
For Microsoft SQL Server database the two parameters "dbname" and "dbhost" are also required. DBHOST: The TCP/IP name of the host on which the database is running.
DBNAME: The database instance name.
For DB2 in AS/400 only "dbhost" is required.
DBHOST: System name of the host on which the database is running.
If the"OptiConnect" is used, the following line should be specified:
OPTICONNECT 1
For DB2/ AIX
The two parameters "dbname" and "dbhost" are required
DBHOST: The host on which the database processes are running. It is the TCP/IP name of the host for Windows NT (As we have seen in the earlier examples).
DBNAME: Database instance name.
The DB2 for AIX Client Application Enabler Software must also be installed on the host on which tp is running.
ALLLOG: "ALOG" $(syear) $(yweek)"is the default value. This variable can be used in TPPARAM file to specify the name of a file in which tp stores information about every transport step carried out for a change request anywhere in the transport process. The file always resides in the log directory.
SYSLOG: "SLOG $(syear) $(yweek).$(system)" is the default value. This variable can be used to name a file in which tp stores information about the progress of import actions in a certain R/3 System. The file does not store information for any particular change request. The file always resides in the log directory.
tp_VERSION: Zero is the default value. If this parameter is set to not equal to zero, a lower version of tp may not work with this TPPARAM file. If the default value (zero) is set, the parameter has no affect.
STOPONERROR: (Numeric value) The default value is 9. When STOPONERROR is set to zero, tp is never stopped in the middle of an "import" or "put" call. When STOPONERROR is set to a value greater than zero, tp stops as soon as a change request generates a return code that is equal to or greater than this value (The numeric value of the STOPONERROR parameter is stored in the variable BADRC). Change requests, which still have to be processed for the current step, are first completed. A "SYNCMARK" in the buffer of the R/3 System involved, sets a limit here. tp divides the value of this parameter between two internal variables. STOPONERROR itself is treated as a boolean variable that determines whether tp should be stopped, if the return code is too high.
REPEATONERROR (Numeric value too): The default value is 9. The REPEATONERROR parameter is similar to STOPONERROR. The difference is, REPEATONERROR specifies the return code up to which a change request is considered to be successfully processed. Return codes less than REPEATONERROR are accepted as "in Order". Change requests that were not processed successfully stay in the buffer.
NEW_SAPNAMES: Default value is "FALSE". A file is created for each user of the R/3 System group in the "sapnames" subdirectory of the transport directory. Except some of the operating system,the name of the user is the name of the file. It is very important to remember hat the special characters or length of the file name could cause problems. If all the R/3 Systems in the transport group have at least Release level 3.0.; TP program is efficient to handle this problem. The user names are modified to create file names that are valid in all operating systems and the real user names are stored in a corresponding file.
Though we have seen so many parameters, for the minimum configuration the following two parameters are very important.
TRANSDIR: specifies the name of the common transport directory. The following is a typical example from TPPARAM of Unix as we have seen before.
transdir = /usr/sap/trans/
DBHOST: contains the name of the database host. In Windows NT environment, this is the TCP/IP host name. The following is an example in Unix:
DEV/dbname = DEV
DEV/dbhost = sap9f
DEV/r3transpath = /usr/sap/DEV/SYS/exe/run/R3trans
For TP, to control ‘Start and Stop’ command files and database in R/3 the following important parameters are specified in TPPARAM:
Parameters for the tp Function "PUT": LOCK_EU (boolean) default value is "TRUE". Though from version 3.1 onward the tp put command is used seldom in cts process still it is important to know how this parameter works. When "tp put" is used, it changes the system change option . If the parameter is set to "FALSE" nothing gets changed. If the parameter is set to "TRUE", the system change option is set to "Objects cannot be changed" at the beginning of the call, and gets changed back to its previous value at the end of the call. The "tp put" command will give the exact status of the locking mechanism.
LOCKUSER (used as boolean value): Default value is "TRUE". This parameter is about the user login while tp put call is executed. If this parameter is set to "FALSE", no locking mechanism for the users takes affect. If this parameter is defined as "TRUE" then a character is set in the database level; so only DDIC and SAP* can log on to the system. Users that have already logged on are not affected (this is a reason for activating the parameters STARTSAP and STOPSAP). The charactertor is removed at the end of the call, and all the users can log on to the SAP R/3 System again.
STARTSAP: Default value is " ".or "PROMPT" for Windows NT . This parameter is used by TP to start an R/3 System. It is not necessary for the clients to make tp start and stop R/3 system..
STOPSAP: Default value is " "or "PROMPT" for Windows NT. TP uses this parameter to stop an R/3 System.
STARTDB: Default value is " ". TP uses the value of this parameter to start the database of an R/3 System.
The parameter is not active under Windows NT.
STOPDB: Default value is " ". TP uses the value of this parameter to stop the database of an R/3 System.
This parameter is not active under Windows NT.
The above parameters in UNIX can be used as following:
STARTSAP = startsap R3
STOPSAP = stopsap R3
STARTDB = startsap db
STOPDB = stopsap db
In Windows NT:
STARTSAP = \\$(SAPGLOBALHOST)\sapmnt\$(system)\sys\exe\run\startsap.exe
R3 <SID> <HOST NAME> <START PROFILE>
STOPSAP = \\$(SAPGLOBALHOST)\sapmnt\$(system)\sys\exe\run\stopsap.exe
R3 <SID> <HOST NAME> <INSTANCE> <PROFILE PATH + Instance profile>
The parameters STARTDB and STOPDB are not active under Windows NT.
Parameters for the tp function "CLEAROLD"
DATALIFETIME (Numeric): Default value is "200". When the data file has reached a minimum age, it is moved to the subdirectory old data with tp check. tp clearold all. The life span of the data files in the data sub directory can be set in days with this all, parameter.
OLDDATALIFETIME (Numeric): Default value is "365". When a file located in the olddata subdirectory is no longer needed for further actions of the transport system and has reached a minimum age, it is removed with tp check.all, tp clearold all. The minimum age in days can be set with this parameter.
COFILELIFETIME (Numeric): Default value is "365". This parameter is used just like DATALIFETIME parameter.
LOGLIFETIME (Numeric): Default value is "200". This parameter applies to the life span of the log files. When the log files in log subdirectory is no longer needed for the transport system and has reached a minimum age, it is deleted with the calls tp check.all, tp clearold all. The minimum age in days can be defined with this parameter.
The Three Key Utilities of the CTS system (TP, R3trans and R3chop):
TP: Earlier in this chapter we have seen the objectives of TP. The TP transport control program is a utility program that helps the user to transport objects from one system to another. TP program is the front-end for the utility R3trans. TP stands for "Transports and Puts". To make the TP work successfully the CTS system needs to be correctly configured. The following steps are very important for TP to run properly.
The transport directory /usr/sap/trans must be installed and NFS mounted to all the systems in the CTS pipe line.
RDDIMPDP program must be running (event driven is recommended) in each client. RDDIMPDP can be scheduled in the background by executing RDDNEWPP or RDDPUTPP. Use the tp checkimpdp <sap sid> command in /usr/sap/trans/bin directory as <sid>adm user to check RDDIMPDP program.
Use the tp connect <sap sid> command in /usr/sap/trans/bin directory to see whether the tp program is connecting to the database successfully or not. To run TP command the user has to logon as <sid>adm in source or target system.
The R/3 Systems in the CTS pipeline must have different names.
The Global CTS Parameter File TPPARAM must be correctly configured.
The source system (for the export) and target system (for the import) must have at least two background work processes. TP always schedules the C class job, so if all the background jobs are defined as A class job then there will be problems in transport steps.
Important Tips :.It is always better to have the up to date TP version installed in your system. A user can ftp a current version of TP from SAPSERV4 of SAP. Though R3trans and other utility programs can be used to do the transport, it is recommended to use TP whenever possible for the following reasons..
The exports and imports are done separately using TP program. For example: when a transport is released from the system, the objects are exported from the source database to the operating system and then the import phase starts to transport those objects to the target system.
TP takes care of the order of the objects. The order, that was followed to export the objects; the same order will be followed to import them to the target database.
The TP command processes all change requests or transports in the SAP system buffer that have not yet been imported successfully. All the import steps are executed automatically after TP calls R3trans program to execute the following necessary steps:
Dictionary Import: ABAP/4 dictionary objects will be imported in this step.
Dictionary Activation: Name tabs or runtime descriptions will be written inactively. The R/3 system keeps running until the activation phase is complete. The enqueue modules are the exceptions in the running phase. After the activation of new dictionary structure the new actions are decided to get the runtime objects to the target system.
Structure conversion: If necessary the table structure is changed in this phase.
Move Nametabs: The new ABAP/4 Dictionary runtime objects which were inactive up to now are moved into the active runtime environment in this process. The database structures are adjusted accordingly. From the first step to the Main import step inconsistencies can occur to the R/3 system. After the main import phase all the inconsistency ca be solved.
Main import with R3trans: All the data are imported completely and the system comes to a consistent state.
Activation of enqueue-objects: The enqueue-objects cannot be activated in the same way as the objects of the ABAP/4 Dictionary, so they have to be activated after the main import in this step. They are then used directly in the running system.
Structure Conversion of match codes, Import application defined objects, versioning and execution of user defined activities are some of the steps after activation of enqueue-objects. The next step is generation of ABAP/4 programs and screens, where all the programs and screens associated with the change request are generated. When all the import steps are completed successfully, the transport request is removed from the import buffer.
It is recommended by SAP to schedule regular periods for imports into the target system (e.g. daily, weekly or monthly). Shorter periods between imports are not advisable. The transport to production should not be done in the off hours when the users are not working
TP can be started with different parameters. The "tp help" command can help user to generate a short description about the use of the command.
The following are the some important commands of TP:
For export:
tp export <change request>: The complete objects in the request from the source system will be transported. This command also used by SAP System when it releases a request.
tp r3e <change request>: R3trans export of one transport request.
tp sde <change request>: Application defined objects in one transport request can be exported.
tp tst <change request> <SAP system >: The test import for transport request can be done using this command.
tp createinfo <change request>: This command creates a information file that is automatically done during the export.
tp verse <request>: This command creates version creates versions of the objects in the specified request.
To Check the transport buffer, global parameter file and change requests:
tp showbuffer <sid>: Shows all the change requests ready to be imported to the target system.
tp count <sid>: Using this command users can find out the number of requests in the buffer waiting for import.
tp go <sid>: This command shows the environment variables needed for the connection to the database of the <sid> or target system.
tp showparams <sid>: All the values of modifiable tp parameters in the global parameter file. The default value is shown for parameters that have not been set explicitly.
To import the change requests or transports:
tp addtobuffer <request>.<sid>: If a change request is not in the buffer then this command is used to add it to the buffer, before the import step starts.
tp import all <sid>: This command imports all the change requests from the buffer to the target system.
tp put <sid>: The objective of this command is same as "tp import all <sid>", but this command locks the system. This command also starts and stops the SAP system, if the parameters startsap and stopsap parameters are not set to " ".
tp import <change request> <sid>: To import a single request from the source system to target system.
tp r3h <change request>| all <sid>: Using this command user can import the dictionary structures of one transport or all the transport from the buffer.
tp act <change request>|all <sid>: This command activates all the dictionary objects in the change request.
tp r3i <change request> | all <sid>: This command imports everything but dictionary structures of one.
tp sdi <change request>|all <sid>: Import application-defined objects.
tp gen <change request>|all <sid>: Screen and reports are generated using this command.
tp mvntabs <sid>: All inactive nametabs will be activated with this command.
tp mea <change request>|all <sid>: This command will activate the enqueue modules in the change request.
When you call this command, note the resulting changes to the import sequence.
Additional tp utility options:
tp check <sid>|all (data|cofiles|log|sapnames|verbose): User uses this command to find all the files in the transport directory that are not waiting for imports and they have exceeded the minimum time specified using the COFILELIFETIME, LOGFILELIFETIME, OLDDATALIFETIME and DATALIFETIME parameters of TPPARAM file.
tp delfrombuffer <request>.<sid>: This command removes a single change request from the buffer. In case of TMS, the request will be deleted from the import queue.
tp setstopmark <sid>: A flag is set to the list of requests ready for import into the target system. When the user uses the command tp import all <sapsid> and tp put <sapsid>, the requests in front of this mark are only processed. After all the requests in front of the mark have been imported successfully, the mark is deleted.
tp delstopmark <sid>: This command deletes the stop mark from the buffer if it exists.
tp cleanbuffer <sapsid>: Removes all the change requests from the buffer that are ready for the import into the target system.
tp locksys <sid>: This command locks the system for all the users except SAP* and DDIC. The users that have already logged on are not affected by the call.
tp unlocksys <sid>: This command unlocks the system for all the users.
tp lock_eu <sid>: This command sets the system change option to "system can not be changed" tmporarily.
tp unlock_eu <sid>: This command unlocks the system for all the changes.
tp backupall <sid>: This command starts a complete backup using R3trans command. It uses /usr/sap/trans/backup directory for the backup.
tp backup delta <sid>: Uses R3trans for a delta backup into /usr/sap/trans/backup directory.
tp sapstart <sid>: To start the R/3 system.
tp stopsap <sid>: To stop the R/3 system.
tp dbstart <sid>: To start the database.
tp dbstop <sid>: To stop the database.
Unconditional modes for TP: Unconditional modes are used with the TP program and these modes are intended for the special actions needed in the transport steps. Using unconditional mode user can manipulate the rules defined by the workbench organizer. The unconditional mode should be used when needed, otherwise it might create problems for the R/3 system database. Unconditional mode is used after the letter "U" in the TP command. Unconditional mode can be a digit between 0 to 9 and each has a meaning to it. The following is a example of a import having unconditional mode.
tp import devk903456 qas client100 U12468
0: Called a overtaker; change request can be imported from buffer without deleting it and then uncoditional mode 1 is used to allow another import in the correct location.
1: If U1 is used with the export then it ignores the correct status of the command file; and if it is used with import then it lets the user import the same change request again.
2: When used with tp export, it dictates the program to not to expand the selection with TRDIR brackets. If used in tp import phase, it overwrites the originals.
3: When used with tp import, it overwrites the system-dependant objects.
5: During the import to the consolidation system it permits the source systems other than the integration system.
6: When used in import phase, it helps to overwrite objects in unconfirmed repairs.
8: During import phase it ignores the limitations caused by the table classification.
9: During import it ignores that the system is locked for this kind of transport.
R3trans: TP uses R3trans program to transport data from one system to another in the CTS pipeline. efficient basis administrator can use R3trans directly to export and import data from and into any SAP systems. Using this utility transport between different database and operating system can e done without any problems. Different versions of R3trans are fully compatible with each other and can be used for export and import. The basis administrator has to be careful using R3trans for different release levels of R/3 software; logical inconsistency might occur if the up to date R3trans is not used for the current version of R/3 system.
The syntax for using the control file is following:
R3trans [<options>] <control file> (several options used at the same time; at least one option must be there)
For example: R3trans –u 1 –w test.log test
In the above example a unconditional mode is used, a log file "test.log" file is used to get the log result and a control file "test", where the instructions are given for the R3trans to follow. The user needs to logon as <sid>adm to execute R3trans.
The following options are available for the R3trans program:
R3trans -d : This command is used to check the database connection .
R3trans -u <int>: Unconditional mode can be used as we have seen in the above example.
R3trans -v : This is used for verbose mode. It writes additional details to the log file
R3trans -i <file>: This command directly imports data from data file without a control file.
R3trans -l <file>: This provides output of a table of contents to the log file.
R3trans -n : This option provides a brief information about new features of R3trans.
R3trans –t: This option is used for the test mode. All modifications in the database are rolled back.
R3trans -c <f1> [<f2>]: This command is used for conversion. The <f1> file will be copied to <f2> file after executing a character set conversion to the local character set.
Important tips: Do not confuse the backup taken using R3trans with database backup. The backups taken using R3trans are logical backups of objects. In case something happens to the SAP system these backups can not be used for recovery. R3trans backups can be only used to restore a copy of a particular object that has been damaged or lost by the user.
R3trans -w <file>: As we have seen in the above example this option can be used to write to a log file. If no file is mentioned then trans.log is default directory for the log.
R3trans also can be used for the database backup.
R3trans –ba: This command is used for a complete backup. we will see in the next paragraph how to use
the control file for the backup.
R3trans –bd: This command is used for a delta backup if the user does not want a complete backup.
R3trans –bi: This option will display backup information.
The following are some of the examples of control files:
We have already learned how to use a command for the logical backup of the objects in the database. To get a complete backup the following example control file can be used.
backup all
file = /usr/sap/trans/backall
The option "file = ..." is the name of the directory into which the data files are to be written. If you are taking a complete backup of DEV system then the backup file is going to look like "DEV.A000.bck" the next complete

